首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   1篇
  国内免费   3篇
  106篇
  2022年   1篇
  2019年   3篇
  2018年   5篇
  2016年   1篇
  2015年   2篇
  2014年   8篇
  2013年   16篇
  2012年   4篇
  2011年   14篇
  2010年   10篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   7篇
  2005年   6篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1991年   1篇
  1989年   1篇
  1984年   2篇
  1982年   3篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
21.
This study revealed that cytosolic aconitase (ACO, EC 4.2.1.3) and isocitrate lyase (ICL, EC 4.1.3.1, marker of the glyoxylate cycle) are active in germinating protein seeds of yellow lupine. The glyoxylate cycle seems to function not only in the storage tissues of food-storage organs, but also in embryonic tissue of growing embryo axes. Sucrose (60 mM) added to the medium of in vitro culture of embryo axes and cotyledons decreased activity of lipase (LIP, EC 3.1.1.3) and activity of glutamate dehydrogenase (NADH-GDH, EC 1.4.1.2). The opposite effect was caused by sucrose on activity of cytosolic ACO, ICL as well as NADP+-dependent (EC 1.1.1.42) and NAD+-dependent (EC 1.1.1.41) isocitrate dehydrogenase (NADP-IDH and NAD-IDH, respectively); activity of these enzymes was clearly stimulated by sucrose. Changes in the activity of LIP, ACO, NADP-IDH, and NAD-IDH caused by sucrose were based on modifications in gene expression because corresponding changes in the enzyme activities and in the mRNA levels were observed. The significance of cytosolic ACO and NADP-IDH in carbon flow from storage lipid to amino acids, as well as the peculiar features of storage lipid breakdown during germination of lupine seeds are discussed.  相似文献   
22.

Background

The endoplasmic reticulum enzyme glucose-6-phosphatase catalyzes the hydrolysis of glucose-6-phosphate to glucose and inorganic phosphate. The enzyme is a part of a multicomponent system that includes several integral membrane proteins; the catalytic subunit (G6PC) and transporters for glucose-6-phosphate, inorganic phosphate and glucose. The G6PC gene family presently includes three members, termed as G6PC, G6PC2, and G6PC3. Although the three isoforms show a moderate amino acid sequence homology, their membrane topology and catalytic site are very similar. The isoforms are expressed differently in various tissues. Mutations in all three genes have been reported to be associated with human diseases.

Scope of review

The present review outlines the biochemical features of the G6PC gene family products, the regulation of their expression, their role in the human pathology and the possibilities for pharmacological interventions.

Major conclusions

G6PCs emerge as integrators of extra- and intracellular glucose homeostasis. Beside the well known key role in blood glucose homeostasis, the members of the G6PC family seem to play a role as sensors of intracellular glucose and of intraluminal glucose/glucose-6-phosphate in the endoplasmic reticulum.

General significance

Since mutations in the three G6PC genes can be linked to human pathophysiological conditions, the better understanding of their functioning in connection with genetic alterations, altered expression and tissue distribution has an eminent importance.  相似文献   
23.
24.
Galanin-like peptide (GALP) is a neuropeptide involved in energy metabolism. The interactive effect of GALP and exercise on energy metabolism has not been investigated. The aim of this study was to determine if energy metabolism in spontaneously exercising mice could be promoted by intracerebroventricular (ICV) GALP administration. Changes in respiratory exchange ratio in response to GALP ICV administration indicated that lipids were primarily consumed followed by a continuous consumption of glucose throughout the dark period in non-exercising mice. In mice permitted to spontaneously exercise on a running-wheel, GALP ICV administration increased the consumed oxygen volume and heat production level from 5 to 11 h after administration. These effects occurred independently from the total running distance. The interaction between GALP ICV administration and spontaneous exercise decreased body weight within 24 h (F(1,16) = 5.772, p < 0.05), with no significant interaction observed regarding food and water intake or total distance. Energy metabolism-related enzymes were assessed in liver and skeletal muscle samples, with a significant interaction on mRNA expression between GALP ICV administration and spontaneous exercise observed in phosphoenolpyruvate carboxykinase (F(1,16) = 18.602, p < 0.001) that regulates gluconeogenesis and glucose transporter-4 (F(1,16) = 21.092, p < 0.001). GALP significantly decreased the mRNA expression of sterol regulatory element-binding protein-1c (p < 0.05) that regulates fatty acid synthesis regardless of spontaneous exercise with no changes to acetyl-CoA carboxylase a and fatty acid synthetase. These results indicate the GALP ICV administration can further promote energy metabolism when administered to spontaneously exercising mice.  相似文献   
25.
Tumor necrosis factor α (TNFα) is known to be involved in dysregulation of hepatic lipid metabolism and insulin signaling. However, whether TNFα also plays a casual role in the onset of fructose-induced nonalcoholic fatty liver disease (NAFLD) has not yet been determined. Therefore, wild-type and TNFα receptor 1 (TNFR1)−/− mice were fed with either 30% fructose solution or plain tap water. Hepatic triglycerides, markers of inflammation and ATP concentration as well as plasma ALT levels were determined. Hepatic PAI-1, SREBP-1, FAS mRNA expression was assessed by real-time RT-PCR. Furthermore, lipid peroxidation and indices of insulin resistance were determined in liver tissue and plasma. In comparison to water controls, chronic intake of 30% fructose solution caused a significant ∼5-fold increase in triglyceride accumulation and neutrophil infiltration in livers of wild-type mice and a ∼8-fold increase in plasma ALT levels. In TNFR1−/− mice, hepatic steatosis was attenuated and neutrophil infiltration in the liver as well as plasma ALT levels was similar to water controls. The protective effect of the TNFR1 deletion against the onset of fructose-induced steatosis was associated with increased phospho AMPK and Akt levels, decreased SREBP-1 and FAS expression in the liver and decreased RBP4 plasma levels, whereas hepatic lipid peroxidation, iNOS protein and ATP levels were similar between wild-type and TNFR1−/− mice fed fructose. Taken together, these data suggest that TNFα plays a casual role in the onset of fructose-induced liver damage as well as insulin resistance in mice through signaling cascades downstream of TNFR1.  相似文献   
26.
Mercaptopicolinic acid inhibited 14CO2 uptake and phosphoenolpyruvate carboxykinase activity in intact fluke. Studies with enzyme preparations showed that the inhibition was mixed-competitive with phosphoenolpyruvate and non-competitive with GTP. Inhibition was not reversed by Mn2+. Pyruvate kinase was not inhibited by mercaptopicolinic acid, although under certain circumstances, mercaptopicolinic acid interfered with the pyruvate kinase assay system. Intact flukes incubated with mercaptopicolinic acid showed depressed adenylate energy charge, increased lactic acid production and reduced flow of carbon from phosphoenolpyruvate to the mitochondrial substrate, malate. Additions of glutamate, alanine or aspartate did not reverse these effects even though, in each case, the amino acid was metabolised and considerably more acid end products were formed than in the absence of mercaptopicolinic acid. The changes in the concentrations of metabolites and end products are consistent with the view that, in flukes whose energy metabolism is impaired by mercaptopicolinic acid, pyruvate enters the mitochondrion and is converted to acetic and propionic acids.  相似文献   
27.
Homocysteine is an intermediate in the sulfur amino acid metabolism. Recent studies suggested that there might be links between hyperhomocysteinemia and insulin resistance. In the present study, we investigated the effect of homocysteine on glucose metabolism. We demonstrated that the levels of insulin were significantly higher in mice with hyperhomocysteinemia than those in the normal mice after administration of glucose. The effect of insulin on glucose output was significantly blocked in the homocysteine-treated hepatocytes. In addition, the expression of phosphoenolpyruvate carboxykinase (PEPCK) gene was elevated in the liver of mice with hyperhomocysteinemia and primary mouse hepatocytes treated with homocysteine. The action of homocysteine was suppressed by H89, a protein kinase A (PKA) inhibitor. Thus, hyperhomocysteinemia may be considered as a risk factor that contributes to the development of insulin resistance with respect to elev- ated glucose output and upregulation of PEPCK, probably via the PKA pathway. Our study provides a novel mechanistic explanation for the development of insulin resistance in hyperhomocysteinemia.  相似文献   
28.
柏雪莲  魏庆宽  李瑾  李桂萍 《微生物学报》2008,48(10):1383-1386
[目的]在原核系统中表达结核杆菌磷酸烯醇型丙酮酸羧激酶(phosphoenolpyruvate car-boxykinase PEPCK),并研究该蛋白在诊断结核病人血清抗体中的应用价值.[方法]应用基因重组技术表达重组蛋白结核杆菌磷酸烯醇型丙酮酸羧激酶,经亲和层析法纯化表达产物.用表达的重组蛋白免疫小鼠,研究其免疫学特性.间接酶联免疫吸附试验(Enzyme link immunosorbent assay,ELISA)检测结核病人血清中特异性IgG抗体,并与结核杆菌抗体胶体金法诊断试剂盒检测结果对比.[结果]试验表明转化入大肠杆菌中的重组质粒能够表达并纯化出相对分子量为72 kDa的重组蛋白;Western blot证实重组蛋白能够与小鼠抗BCG血清发生特异性反应;重组蛋白免疫小鼠后,小鼠血清中的抗体滴度可达1∶1280以上;重组蛋白用作ELISA包被抗原检测病人血清阳性率为17.3%(30/173),其中排菌病人的阳性率为32.5%(13/42),不排菌病人的阳性率为12.9%.该方法结果与结核杆菌抗体胶体金法诊断试剂盒的检测结果相比,敏感性为51.0%,特异性为96.7%.[结论]结核杆菌PEPCK具有较好的免疫原性和抗原性,有可能作为结核病血清学诊断的一组抗原之一.  相似文献   
29.
30.

Background

Plasma glucose levels are tightly regulated within a narrow physiologic range. Insulin-mediated glucose uptake by tissues must be balanced by the appearance of glucose from nutritional sources, glycogen stores, or gluconeogenesis. In this regard, a common pathway regulating both glucose clearance and appearance has not been described. The metabolism of glucose to produce ATP is generally considered to be the primary stimulus for insulin release from beta-cells. Similarly, gluconeogenesis from phosphoenolpyruvate (PEP) is believed to be the primarily pathway via the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). These models cannot adequately explain the regulation of insulin secretion or gluconeogenesis.

Scope of review

A metabolic sensing pathway involving mitochondrial GTP (mtGTP) and PEP synthesis by the mitochondrial isoform of PEPCK (PEPCK-M) is associated with glucose-stimulated insulin secretion from pancreatic beta-cells. Here we examine whether there is evidence for a similar mtGTP-dependent pathway involved in gluconeogenesis. In both islets and the liver, mtGTP is produced at the substrate level by the enzyme succinyl CoA synthetase (SCS-GTP) with a rate proportional to the TCA cycle. In the beta-cell PEPCK-M then hydrolyzes mtGTP in the production of PEP that, unlike mtGTP, can escape the mitochondria to generate a signal for insulin release. Similarly, PEPCK-M and mtGTP might also provide a significant source of PEP in gluconeogenic tissues for the production of glucose. This review will focus on the possibility that PEPCK-M, as a sensor for TCA cycle flux, is a key mechanism to regulate both insulin secretion and gluconeogenesis suggesting conservation of this biochemical mechanism in regulating multiple aspects of glucose homeostasis. Moreover, we propose that this mechanism may be important for regulating insulin secretion and gluconeogenesis compared to canonical nutrient sensing pathways.

Major conclusions

PEPCK-M, initially believed to be absent in islets, carries a substantial metabolic flux in beta-cells. This flux is intimately involved with the coupling of glucose-stimulated insulin secretion. PEPCK-M activity may have been similarly underestimated in glucose producing tissues and could potentially be an unappreciated but important source of gluconeogenesis.

General significance

The generation of PEP via PEPCK-M may occur via a metabolic sensing pathway important for regulating both insulin secretion and gluconeogenesis. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号