首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
  2014年   5篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2004年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
11.
12.
Phosphatidylcholine (PC) homeostasis is important for maintaining cellular growth and survival. Cellular growth and apoptosis may also be influenced by the PC to phosphatidylethanolamine (PE) ratio as a reduction in this ratio can result in a loss of membrane integrity. To investigate whether a reduced PC:PE ratio influences cellular growth and apoptosis, we utilized the MT58 cell line, which contains a thermo-sensitive mutation in CTP:phosphocholine cytidylyltransferase-α, the rate-limiting enzyme for PC biosynthesis. Incubation of MT58 cells at the restrictive temperature of 41 °C results in a reduction of cellular PC and induces apoptosis. Furthermore, MT58 cells have a 50% reduction in the PC:PE ratio when incubated at 41 °C. In an attempt to normalize the PC:PE ratio, which may stabilize cellular membranes and rescue MT58 cells from apoptosis, the cells were treated with either silencing RNA to impair PE biosynthesis or lysophosphatidylcholine to increase PC mass. Impairing PE biosynthesis in MT58 cells reduced cellular PE and PC concentrations by 30% and 20%, but did not normalize the PC:PE ratio. Loss of both phospholipids enhanced the onset of apoptosis in MT58 cells. Lysophosphatidylcholine normalized cellular PC, increased PE mass by 10%, restored cellular growth and prevented apoptosis of MT58 cells without normalizing the PC:PE ratio. Furthermore, total amount of cellular PC and PE, but not the PC:PE ratio, correlated with cellular growth (R2 = 0.76), and inversely with cellular apoptosis (R2 = 0.97). These data suggest the total cellular amount of PC and PE, not the PC:PE ratio, influences growth and membrane integrity of MT58 cells.  相似文献   
13.
Primary rodent hepatocytes and hepatoma cell lines are commonly used as model systems to elucidate and study potential drug targets for metabolic diseases such as obesity and atherosclerosis. However, if therapies are to be developed, it is essential that our knowledge gained from these systems is translatable to that of human. Here, we have characterized lipid and lipoprotein metabolism in primary human hepatocytes for comparison to rodent primary hepatocytes and human hepatoma cell lines. Primary human hepatocytes were maintained in collagen coated dishes in confluent monolayers for up to 3 days. We found primary human hepatocytes were viable, underwent lipid synthesis, and were able to secret lipoproteins up to 3 days in culture. Furthermore, the lipoprotein profile secreted by primary human hepatocytes was comparable to that found in human plasma; this contrasts with primary rodent hepatocytes and human hepatoma cells. We also investigated the pharmacological effects of nicotinic acid (niacin, NA), a potent dyslipidemic drug, on hepatic lipid synthesis and lipoprotein secretion. We found NA increased the expression of ATP-binding cassette transporter A1 in primary human hepatocytes, which may potentially explain how NA increases plasma high-density lipoproteins in humans. In conclusion, primary human hepatocytes are a more relevant model to study lipid synthesis and lipoprotein secretion than hepatoma cells or rodent primary hepatocyte models. Further research needs to be done to maintain liver specific functions of primary human hepatocytes in prolonged cultures for these cells to be a viable model.  相似文献   
14.
There is a paucity of information about phosphatidylcholine (PC) biosynthesis in bone formation. Thus, we characterized PC metabolism in both primary human osteoblasts (HOB) and human osteosarcoma MG-63 cells. Our results show that the CDP-choline pathway is the only de novo route for PC biosynthesis in both HOB and MG-63 cells. Both CK activity and CKα expression in MG-63 cells were significantly higher than those in HOB cells. Silencing of CKα in MG-63 cells had no significant effect on PC concentration but decreased the amount of phosphocholine by approximately 80%. The silencing of CKα also reduced cell proliferation. Moreover, pharmacological inhibition of CK activity impaired the mineralization capacity of MG-63 cells. Our data suggest that CK and its product phosphocholine are required for the normal growth and mineralization of MG-63 cells.  相似文献   
15.
16.
The alveolar type II epithelial (ATII) cell is highly specialised for the synthesis and storage, in intracellular lamellar bodies, of phospholipid destined for secretion as pulmonary surfactant into the alveolus. Regulation of the enzymology of surfactant phospholipid synthesis and metabolism has been extensively characterised at both molecular and functional levels, but understanding of surfactant phospholipid metabolism in vivo in either healthy or, especially, diseased lungs is still relatively poorly understood. This review will integrate recent advances in the enzymology of surfactant phospholipid metabolism with metabolic studies in vivo in both experimental animals and human subjects. It will highlight developments in the application of stable isotope-labelled precursor substrates and mass spectrometry to probe lung phospholipid metabolism in terms of individual molecular lipid species and identify areas where a more comprehensive metabolic model would have considerable potential for direct application to disease states.  相似文献   
17.
Disturbances of lipid metabolism are a major problem in livestock fish and the present study analysed the different tissue expression patterns and regulations of 40 lipid-relevant genes in gilthead sea bream. Nineteen sequences, including fatty acid elongases (4), phospholipases (7), acylglycerol lipases (8) and lipase-maturating enzymes (1), were new for gilthead sea bream (GenBank, JX975700, JX975701, JX975702, JX975703, JX975704, JX975705, JX975706, JX975707, JX975708, JX975709, JX975710, JX975711, JX975712, JX975713, JX975714, JX975715, JX975716, JX975717 and JX975718). Up to six different lipase-related enzymes were highly expressed in adipose tissue and liver, which also showed a high expression level of Δ6 and Δ9 desaturases. In the brain, the greatest gene expression level was achieved by the very long chain fatty acid elongation 1, along with relatively high levels of Δ9 desaturases and the phospholipase retinoic acid receptor responder. These two enzymes were also expressed at a high level in white skeletal muscle, which also shared a high expression of lipid oxidative enzymes. An overall down-regulation trend was observed in liver and adipose tissue in response to fasting following the depletion of lipid stores. The white skeletal muscle of fasted fish showed a strong down-regulation of Δ9 desaturases in conjunction with a consistent up-regulation of the “lipolytic machinery” including key enzymes of tissue fatty acid uptake and mitochondrial fatty acid transport and oxidation. In contrast, the gene expression profile of the brain remained almost unaltered in fasted fish, which highlights the different tissue plasticity of lipid-related genes. Taken together, these findings provide new fish genomic resources and contribute to define the most informative set of lipid-relevant genes for a given tissue and physiological condition in gilthead sea bream.  相似文献   
18.
Rima Obeid 《FEBS letters》2009,583(8):1215-1225
An association between hyperlipidemia and hyperhomocysteinemia (HHCY) has been suggested. This link is clinically important in management of vascular risk factors especially in elderly people and patients with metabolic syndrome. Higher plasma homocysteine (Hcy) was associated with lower high-density lipoprotein (HDL)-cholesterol level. Moreover, HHCY was associated with disturbed plasma lipids or fatty liver. It seems that hypomethylation associated with HHCY is responsible for lipid accumulation in tissues. Decreased methyl group will decrease the synthesis of phosphatidylcholine, a major phospholipid required for very low-density lipoprotein (VLDL) assembly and homeostasis. The effect of Hcy on HDL-cholesterol is probably related to inhibiting enzymes or molecules participating in HDL-particle assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号