首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   18篇
  国内免费   12篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   7篇
  2019年   6篇
  2018年   12篇
  2017年   4篇
  2016年   8篇
  2015年   17篇
  2014年   15篇
  2013年   22篇
  2012年   16篇
  2011年   27篇
  2010年   27篇
  2009年   24篇
  2008年   21篇
  2007年   27篇
  2006年   21篇
  2005年   21篇
  2004年   15篇
  2003年   12篇
  2002年   12篇
  2001年   11篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
排序方式: 共有342条查询结果,搜索用时 15 毫秒
31.
The mitochondrial serine protease Omi/HtrA2 has a proapoptotic role in mammalian cells. However, neither the topology nor the processing of Omi in mitochondria is clearly understood. To determine the topology of Omi in the mitochondrial IMS, EGFP fusions were expressed with the entire N-terminal segment of full-length Omi (FL-Omi) (133-EGFP), and that without the transmembrane region (DeltaTM-EGFP) in the cells. Immunocytochemical staining and alkaline extraction experiments revealed that the TM determines the topology of Omi in the IMS and anchors the pro form into the inner membrane. As a result, the protease and the PDZ domains are exposed to the IMS. Mature Omi largely exists in the IMS as a soluble form. The processing sites of the precursor protein were examined by in vitro import experiments. The import of the processing mutants revealed importance of Arg80, Arg91, and Arg93 residues for the processing of the N-terminal segment of FL-Omi. These results suggest that the N-terminal segment of FL-Omi contains multiple processing sites processed by matrix processing proteases.  相似文献   
32.
The mitochondrial serine protease HtrA2/Omi helps to maintain mitochondrial function by handling misfolded proteins in the intermembrane space. In addition, HtrA2/Omi has been implicated as a proapoptotic factor upon release into the cytoplasm during the cell death cascade. The protein contains a C-terminal PDZ domain that packs against the protease active site and inhibits proteolytic activity. Engagement of the PDZ domain by peptide ligands has been shown to activate the protease and also has been proposed to mediate substrate recognition. We report a detailed structural and functional analysis of the human HtrA2/Omi PDZ domain using peptide libraries and affinity assays to define specificity, X-ray crystallography to view molecular details of PDZ-ligand interactions, and alanine-scanning mutagenesis to probe the peptide-binding groove. We show that the HtrA2/Omi PDZ domain recognizes both C-terminal and internal stretches of extended, hydrophobic polypeptides. High-affinity ligand recognition requires contacts with up to five hydrophobic side chains by distinct sites on the PDZ domain. However, no particular residue type is absolutely required at any position, and thus, the HtrA2/Omi PDZ domain appears to be a promiscuous module adapted to recognize unstructured, hydrophobic polypeptides. This type of specificity is consistent with the biological role of HtrA2/Omi in mitochondria, which requires the recognition of diverse, exposed stretches of hydrophobic sequences in misfolded proteins. The findings are less consistent with, but do not exclude, a role for the PDZ domain in targeting the protease to specific substrates during apoptosis.  相似文献   
33.
Summary Protein-tyrosine phosphatase PTPN3 is a membrane-associated non-receptor protein-tyrosine phosphatase. PTPN3 contains a N-terminal FERM domain, a middle PDZ domain, and a C-terminal phosphatase domain. Upon co-expression of PTPN3, the level of human hepatitis B viral (HBV) RNAs, 3.5 kb, 2.4/2.1 kb, and 0.7 kb transcribed from a replicating HBV expression plasmid is significantly reduced in human hepatoma HuH-7 cells. When the expression of endogenous PTPN3 protein is diminished by specific small interfering RNA, the expression of HBV genes is enhanced, indicating that the endogenous PTPN3 indeed plays a suppressive role on HBV gene expression. PTPN3 can interact with HBV core protein. The interaction is mediated via the PDZ domain of PTPN3 and the carboxyl-terminal last four amino acids of core. Either deletion of PDZ domain of PTPN3 or substitution of PDZ ligand in core has no effect on PTPN3-mediated suppression. These results clearly show that the interaction of PTPN3 with core is not required for PTPN3 suppressive effect. Mutation of 359serine and 835serine of 14-3-3β binding sites to alanine, which slightly reduces the interaction with 14-3-3β, does not influence the PTPN3 effect. In contrast, mutation of the invariant 842cysteine residue in phosphatase domain to serine, which makes the phosphatase activity inactive, does not change its subcellular localization and interaction with core or 14-3-3β, but completely abolishes PTPN3-mediated suppression. Furthermore, deletion of FERM domain does not affect the phosphatase activity or interaction with 14-3-3β, but changes the subcellular localization from cytoskeleton-membrane interface to cytoplasm and nucleus, abolishes binding to core, and diminishes the PTPN3 effect on HBV gene expression. Taken together, these results demonstrate that the phosphatase activity and FERM domain of PTPN3 are essential for its suppression of HBV gene expression. En-Chi Hsu, Yen-Cheng Lin have equal contributions to this work.  相似文献   
34.
Many G-protein-coupled receptors carry C-terminal ligand motifs for PSD-95/discs large/ZO-1 (PDZ) domains; via interaction with PDZ domain-containing scaffold proteins, this allows for integration of receptors into signaling complexes. However, the presence of PDZ domain proteins attached to intracellular membranes suggests that PDZ-type interactions may also contribute to subcellular sorting of receptors. The protein interacting specifically with Tc10 (PIST; also known as GOPC) is a trans-Golgi-associated protein that interacts through its single PDZ domain with a variety of cell surface receptors. Here we show that PIST controls trafficking of the interacting β1-adrenergic receptor both in the anterograde, biosynthetic pathway and during postendocytic recycling. Overexpression and knockdown experiments show that PIST leads to retention of the receptor in the trans-Golgi network (TGN), to the effect that overexpressed PIST reduces activation of the MAPK pathway by β1-adrenergic receptor (β1AR) agonists. Receptors can be released from retention in the TGN by coexpression of the plasma membrane-associated scaffold PSD-95, which allows for transport of receptors to the plasma membrane. Stimulation of β1 receptors and activation of the cAMP pathway lead to relocation of PIST from the TGN to an endosome-like compartment. Here PIST colocalizes with SNX1 and the internalized β1AR and protects endocytosed receptors from lysosomal degradation. In agreement, β1AR levels are decreased in hippocampi of PIST-deficient mice. Our data suggest that PIST contributes to the fine-tuning of β1AR sorting both during biosynthetic and postendocytic trafficking.  相似文献   
35.
A variety of experimental evidence suggests that rapid, long-range propagation of conformational changes through the core of proteins plays a vital role in allosteric communication. Here, we describe a non-equilibrium molecular dynamics simulation method, anisotropic thermal diffusion (ATD), which allowed us to observe a dominant intramolecular signaling pathway in PSD-95, a member of the PDZ domain protein family. The observed pathway is in good accordance with a pathway previously inferred using a multiple sequence analysis of 276 PDZ domain proteins. In comparison with conventional solution molecular dynamics methods, the ATD method provides greatly enhanced signal-to-noise, allowing long-distance correlations to be observed clearly. The ATD method requires neither a large number of homologous proteins, nor extremely long simulation times to obtain a complete signaling pathway within a protein. Therefore, the ATD method should prove to be a powerful and general complement to experimental efforts to understand the physical basis of intramolecular signaling.  相似文献   
36.
The folding pathway of the third domain of PDZ from the synaptic protein PSD-95 was characterized using kinetic and equilibrium methods by monitoring the fluorescence signal from a Trp residue that is incorporated at a near-surface position. Kinetic folding of this domain showed multiple exponential phases, whereas unfolding showed a single exponential phase. The slow kinetic phases were attributed to isomerization of proline residues, since there are five proline residues in this domain. We found that the logarithms of the rate constants for the fast phase of folding and unfolding are linearly dependent on the concentrations of denaturant. The unfolding free energy derived from these rate constants at zero denaturant was close to the value measured using the equilibrium method, suggesting the absence of detectable sub-millisecond folding intermediates. However, native-state hydrogen exchange experiments detected a partially unfolded intermediate under native conditions. It was further confirmed by a protein engineering study. These data suggest that a hidden intermediate exists after the rate-limiting step in the folding of the third domain of PDZ.  相似文献   
37.
Proteomic analyses have revealed a novel synaptic proline-rich membrane protein: PRR7 (proline rich 7), in the postsynaptic density (PSD) fraction of rat forebrain. PRR7 is 269 amino acid residues long, and displays a unique architecture, composed of a very short N-terminal extracellular region, a single membrane spanning domain, and a cytoplasmic domain possessing a proline-rich sequence and a C-terminal type-1 PDZ binding motif. A fraction of PRR7 accumulates in spines along with synapse maturation, and colocalizes with PSD-95 in a punctate pattern in rat hippocampal neural cultures. Immunoprecipitation and GST pull-down assays demonstrated that PRR7 binds to the third PDZ domain of PSD-95. In addition, the NMDA receptor subunits, NR1 and NR2B, specifically co-immunoprecipitated with PRR7. These results suggest that PRR7 is involved in modulating neural activities via interactions with the NMDA receptor and PSD-95, and PSD core formation.  相似文献   
38.
APS (adaptor protein with PH and SH2 domains) is an adaptor protein phosphorylated by several tyrosine kinase receptors including the insulin receptor. To identify novel binding partners of APS, we performed yeast two-hybrid screening. We identified Enigma, a PDZ and LIM domain-containing protein that was previously shown to be associated with the actin cytoskeleton. In HEK 293 cells, Enigma interacted specifically with APS, but not with the APS-related protein SH2-B. This interaction required the NPTY motif of APS and the LIM domains of Enigma. In NIH-3T3 cells that express the insulin receptor, Enigma and APS were partially co-localised with F-actin in small ruffling structures. Insulin increased the complex formation between APS and Enigma and their co-localisation in large F-actin containing ruffles. While in NIH-3T3 and HeLa cells the co-expression of both Enigma and APS did not modify the actin cytoskeleton organisation, expression of Enigma alone led to the formation of F-actin clusters. Similar alteration in actin cytoskeleton organisation was observed in cells expressing both Enigma and APS with a mutation in the NPTY motif. These results identify Enigma as a novel APS-binding protein and suggest that the APS/Enigma complex plays a critical role in actin cytoskeleton organisation.  相似文献   
39.
The crystal structure of the second PDZ domain of the scaffolding protein syntenin was solved using data extending to 0.73 A resolution. The crystallographic model, including the hydrogen atoms and the anisotropic displacement parameters, was refined to a conventional R-factor of 7.5% and Rfree of 8.7%, making it the most precise crystallographic model of a protein molecule to date. The model reveals discrete disorder in several places in the molecule, and significant plasticity of the peptide bond, with some omega angles deviating by nearly 20 degrees from planarity. Most hydrogen atoms are easily identifiable in the electron density and weak hydrogen bonds of the C-H...O type are clearly visible between the beta-strands. The study sets a new standard for high-resolution protein crystallography.  相似文献   
40.
We cloned from a rat brain cDNA library a novel cDNA and named it a potential synaptic guanine nucleotide exchange factor (GEF) for Arf (synArfGEF (Po)) (GenBank Accession no. AB057643) based on its domain structure and localization. The cloned gene was 7410 bases long with a 3585-bp coding sequence encoding a protein of 1194 amino acids. The deduced protein contained a coiled-coil structure in the N-terminal portion followed by Sec7 and Plekstrin homology (PH) domains. Thus, the protein was a member of the Sec7 family of proteins, GEFs. Conservation of the ADP-ribosylation factor (Arf)-binding sequence suggested that the protein was a GEF for Arf. The gene was expressed specifically in the brain, where it exhibited region-specific expression. The protein was highly enriched in the postsynaptic density (PSD) fraction prepared from the rat forebrain. Uniquely, the protein interacted with PSD-95, SAP97 and Homer/Vesl 1/PSD-Zip45 via its C-terminal PDZ-binding motif and co-localized with these proteins in cultured cortical neurons. These results supported its localization in the PSD. The postsynaptic localization was also supported by immunohistochemical examination of the rat brain. The mRNA for the synArfGEF was also localized to dendrites, as well as somas, of neuronal cells. Thus, both the mRNA and the protein were localized in the postsynaptic compartments. These results suggest a postsynaptic role of synArfGEF in the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号