首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
  2001年   1篇
  1994年   2篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1975年   1篇
  1974年   5篇
  1973年   6篇
  1971年   2篇
排序方式: 共有53条查询结果,搜索用时 31 毫秒
41.
42.
A high molecular mass serine protease has been purified to homogeneity from the latex of Morus indica cv. K2 by the combination of techniques of ammonium sulfate precipitation, hydrophobic interaction chromatography, and size-exclusion chromatography. The protein is a dimer with a molecular mass of 134.5 kDa and with two monomeric subunits of 67.2 kDa and 67.3 (MALDI-TOF), held by weak bonds susceptible to disruption on exposure to heat and very low pH. Isoelectric point of the enzyme is pH 4.8. The pH and temperature optima for caseinolytic activity were 8.5 and 80 degrees C, respectively. The extinction coefficient (epsilon280(1%)) of the enzyme was estimated as 41.24 and the molecular structure consists of 52 tryptophan, 198 tyrosine and 42 cysteine residues. The enzyme activity was inhibited by phenylmethylsulfonylflouride, chymostatin and mercuric chloride indicating the enzyme to be a serine protease. The enzyme is fairly stable and similar to subtilases in its stability toward pH, strong denaturants, temperature, and organic solvents. Polyclonal antibodies specific to enzyme and immunodiffusion studies reveal that the enzyme has unique antigenic determinants. The enzyme has activity towards broad range of substrates comparable to those of subtilisin like proteases. The N-terminal residues of indicain (T-T-N-S-W-D-F-I-G-F-P) exhibited considerable similarity to those of other known plant subtilases, especially with cucumisin, a well-characterized plant subtilase. This is the first report of purification and characterization of a subtilisin like dimeric serine protease from the latex of M. indica cv. K2. Owing to these unique properties the reported enzyme would find applications in food and pharma industry.  相似文献   
43.

Background

Dienelactone hydrolases catalyze the hydrolysis of dienelactone to maleylacetate, which play a key role for the microbial degradation of chloroaromatics via chlorocatechols. Here, a thermostable dienelactone hydrolase from thermoacidophilic archaeon Sulfolobus solfataricus P1 was the first purified and characterized and then expressed in Escherichia coli.

Methods

The enzyme was purified by using several column chromatographys and characterized by determining the enzyme activity using p-nitrophenyl caprylate and dienelactones. In addition, the amino acids related to the catalytic mechanism were examined by site-directed mutagenesis using the identified gene.

Results

The enzyme, approximately 29 kDa monomeric, showed the maximal activity at 74 °C and pH 5.0, respectively. The enzyme displayed remarkable thermostability: it retained approximately 50% of its activity after 50 h of incubation at 90 °C, and showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme displayed substrate specificities toward trans-dienelactone, not cis-isomer, and also carboxylesterase activity toward p-nitrophenyl esters ranging from butyrate (C4) to laurate (C12). The kcat/Km ratios for trans-dienelactone and p-nitrophenyl caprylate (C8), the best substrate, were 92.5 and 54.7 s−1 μM−1, respectively.

Conclusions

The enzyme is a typical dienelactone hydrolase belonging to α/β hydrolase family and containing a catalytic triad composed of Cys151, Asp198, and His229 in the active site.

General significance

The enzyme is the first characterized archaeal dienelactone hydrolase.  相似文献   
44.
用外源SPD处理根系可以显著提高小麦叶内SPD的含量,抑制乙烯的产生和蛋白酶的活性,提高蛋白质的含量并降低细胞膜的相对透性。PCMB处理根系可以显著降低小麦叶片SPD的含量,促进乙烯的产生,增加蛋白酶的活性和细胞膜的相对透性,降低蛋白质和叶绿素的含量。可见小麦叶片SPD含量可能与乙烯产生间存在负的相关性。较高的亚精胺含量及较低的乙烯产生速率可能对叶片的衰老过程具有阻抑作用。反之则可能表现为促进衰老的作用。  相似文献   
45.
Rat pancreatic islets have been shown to possess specific binding sites for 125I-labeled insulin. Enzymatic and chemical modification of islets are used to reveal important structures and chemical groups for insulin binding. Pretreatment with trypsin, neuraminidase, 1-ethyl-3(3-dimethylamino)carbodiimide (a carboxyl reagent), tetranitromethane (a tyrosyl and thiol reagent), and 1,3-difluoro-4,6-dinitrobenze (modification of protein functional groups) decreased binding of insulin. This was due to the diminuation of the receptor number; in the case of trypsin-pretreatment also the receptor affinity was decreased. Inhibition of insulin binding was in each case associated with a decrease of the inhibitory effect of exogenous insulin on glucose-induced insulin secretion (not measured in the case of difluorodinitrobenzene and tetranitromethane). Phospholipase A2 (cleavage of phospholipids) did not affect these parameters. 5,5′-dithiobis(2-nitrobenzoic acid) (Ellman's reagent) and possibly p-chloromercuribenzoate (both thiol reagents) increased the number of receptors and decreased receptor affinity, but did not influence the inhibitory effect of insulin on insulin release. It is concluded that protein functional groups, sialic acid, carboxyl and tyrosyl groups, but not phospholipids and probably not sylfhyryl groups are important for the interaction of insulin with insulin receptors of rat pancreatic islets.  相似文献   
46.
Purified membrane vesicles were treated with various reagents specific for different amino acid side-chains. Titration of sulfhydryl groups with specific reagents shows that the sulfhydryl content of membrane vesicles as estimated directly is similar to that found by treating spheroplasts or cells and then isolating the membrane vesicles. The blocking of sulfhydryl groups specifically inhibits the α-methylglucoside transport system (phosphotransferase system), whereas the glycerophosphate acylation system is not affected. The kinetics of inhibition of the first system show that a high reactivity of the sulfhydryl groups is involved. Inhibition of the acyltransferase activity by sulfhydryl reagents occurs only on partial denaturation of the membranes induced by mild sonication, heat or toluene treatment. The Inhibition is at the level of the glycerol 3-phosphate:acyl thioester acyltransferase.The effects of sonication and/or sulfhydryl reagents were measured by sulfhydryl titration, by assays of NADH oxidase and d-lactate dehydrogenase activities, as well as by 1-anilino-8-naphthalene sulfonate binding. The results support the hypothesis that the acyltransferase system is embedded within the membrane and that the readily accessible permease system is closer to (or at) the surface of the membrane.  相似文献   
47.
A prenyltransferase activity (EC 2.5.1.1) has been partially purified from the flavedo of Citrus sinensis with 30–40-fold purification and 35–60 % yield. The enzyme catalyses the condensation of IPP with DMAPP or GPP. The products are neryl and geranyl pyrophosphate as well as (2E,6E)- and (2Z,6E)-farnesyl pyrophosphate. The two C15-products are predominant. The E- and Z-synthetase activities are partially dissociated during the purification procedure, as well as by heat or ageing. Preparations devoid of Z-synthetase were obtained. Mg2 + is required for full activity. Mn2 + or Co2 + can replace Mg2 +. The ratio of E/Z-products formed is different for each cation. Mg2 + complexes of allylic substrates or of products protect the enzyme against heat-inactivation and against inactivation by DTNB. The results are interpreted in terms of two or more prenyltransferases stereoselective for the synthesis of E- and Z-products.  相似文献   
48.
M.J. Tervoort  B.F. Van Gelder 《BBA》1983,722(1):137-143
The optical spectrum of reduced bovine cytochrome c1 at 77 K shows a fine splitting of the β-band, which is indicative of the native conformation of the protein. At room temperature, this conformation is reflected in an absorbance band at 530 nm. The exposure of the heme of ferrocytochrome c1, investigated by means of solvent-perturbation spectroscopy, appears to be extremely sensitive to temperature and SH reagents bound to the oxidized protein. Addition of combinations of potential ligands to the isolated tryptic heme peptide of cytochrome c1 reveals that only a mixture of methionine and cysteine (or their equivalents) generates a β-band at 77 K which is identical in shape to that of native cytochrome c1. In the EPR spectrum of a complex of ferrocytochrome c1 and nitric oxide at pH 10.5, no hyperfine splitting derived from a second ligated nitrogen atom could be detected. The results indicate that methionine and cysteine are the axial ligands of heme in cytochrome c1. The EPR spectrum of isolated ferricytochrome c1 is that of a low-spin heme iron compound with a gz value of 3.36 and a gy value of 2.04.  相似文献   
49.
Energy transfer inhibition by HgCl2 has been demonstrated to be selective for certain System I partial reactions. On the basis of different HgCl2 effects on the System I reactions, reduced 2,6-dichlorophenolindophenol → methylviologen, diaminodurene → methylviologen and N-phenazine methosulfate cyclic, two sites of energy conservation associated with System I are proposed. Furthermore, these sites are in parallel with each other, in series with the site closely associated with Photosystem II and are shared between non-cyclic and cyclic electron transport.  相似文献   
50.
Dithiothreitol (DTT), a disulfide reducing agent, diminished the specific binding of [3H] dopamine to partially purified calf striatal membranes (P2) but did not have an effect on [3H] spiroperidol binding. The thiol reagents, p-chloromercuribenzoate (PCMB), N-ethylmaleimide (NEM) and iodoacetamide (IA), were also tested for inhibitory effects on agonist and antagonist binding to the dopamine receptor. PCMB inhibited both [3H] dopamine and [3H] spiroperidol binding by changing the affinity (Kd) and the number of binding sites (Bmax) for both of these ligands. This effect of PCMB was reversed by the addition of DTT. NEM inhibited binding to the dopamine agonist site but not to the antagonist site, while IA was ineffective on either site. These results indicate that a DTT-reducible disulfide bond may be an essential component for agonist binding to the dopamine receptor. Furthermore, the experiments with PCMB, NEM and IA suggest that the exposure of thiol groups in the dopamine receptor may play an important role in agonist and antagonist binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号