首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
  2001年   1篇
  1994年   2篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1975年   1篇
  1974年   5篇
  1973年   6篇
  1971年   2篇
排序方式: 共有53条查询结果,搜索用时 296 毫秒
31.
Inhibition by aurinetricarboxylic acid (ATA) of glucose-6-phosphate (G6P) dehydrogenase was "competitive" with respect to G6P and "mixed type" with respect to NADP+. Inhibited enzyme bound two molecules of ATA. Kinetic constants, Km, Ki at varying pH suggested possible binding of the inhibitor by the sulfhydryl of the enzyme; of the several enzymes tested only milk xanthine oxidase and G6P dehydrogenase from bovine adrenal was inhibited by ATA.  相似文献   
32.
33.
1-Phosphofructokinase (EC 2.7.1.56) (1PFK) was purified and characterized for the first time from an archaebacterial halophile Haloarcula vallismortis. The purification procedure involving (NH4)2SO4 fractionation, (NH4)2SO4-mediated chromatography on Sepharose 4B, CM-cellulose chromatography, hydrophobic on phenyl Sepharose and adsorption chromatography on hydroxylapatite yielded a preparation with a specific activity of 128 and 100-fold purification. From gel filtration and sucrose density gradient ultracentrifugation, the apparent molecular mass of halobacterial 1PFK was found as 76 ± 5 kDa. The halobacterial 1PFK appears to be monomeric and the possibility of an unstable phosphoenzyme intermediate during its catalysis could not be ruled out. As in the case of many halobacterial enzymes, the 1PFK was found to be halophilic and thermostable. Other catalytic features of halobacterial 1PFK were similar to its counterparts from eubacterial sources.  相似文献   
34.

Background

Dienelactone hydrolases catalyze the hydrolysis of dienelactone to maleylacetate, which play a key role for the microbial degradation of chloroaromatics via chlorocatechols. Here, a thermostable dienelactone hydrolase from thermoacidophilic archaeon Sulfolobus solfataricus P1 was the first purified and characterized and then expressed in Escherichia coli.

Methods

The enzyme was purified by using several column chromatographys and characterized by determining the enzyme activity using p-nitrophenyl caprylate and dienelactones. In addition, the amino acids related to the catalytic mechanism were examined by site-directed mutagenesis using the identified gene.

Results

The enzyme, approximately 29 kDa monomeric, showed the maximal activity at 74 °C and pH 5.0, respectively. The enzyme displayed remarkable thermostability: it retained approximately 50% of its activity after 50 h of incubation at 90 °C, and showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme displayed substrate specificities toward trans-dienelactone, not cis-isomer, and also carboxylesterase activity toward p-nitrophenyl esters ranging from butyrate (C4) to laurate (C12). The kcat/Km ratios for trans-dienelactone and p-nitrophenyl caprylate (C8), the best substrate, were 92.5 and 54.7 s−1 μM−1, respectively.

Conclusions

The enzyme is a typical dienelactone hydrolase belonging to α/β hydrolase family and containing a catalytic triad composed of Cys151, Asp198, and His229 in the active site.

General significance

The enzyme is the first characterized archaeal dienelactone hydrolase.  相似文献   
35.
The 3-hydroxybenzoate hydroxylase (MHBH) from Comamonas testosteroni KH122-3s is a single-component flavoprotein monooxygenase, a member of the glutathione reductase (GR) family. It catalyzes the conversion of 3-hydroxybenzoate to 3,4-dihydroxybenzoate with concomitant requirements for equimolar amounts of NADPH and molecular oxygen. The production of dihydroxy-benzenoid derivative by hydroxylation is the first step in the aerobic degradation of various phenolic compounds in soil microorganisms. To establish the structural basis for substrate recognition, the crystal structure of MHBH in complex with its substrate was determined at 1.8 A resolution. The enzyme is shown to form a physiologically active homodimer with crystallographic 2-fold symmetry, in which each subunit consists of the first two domains comprising an active site and the C-terminal domain involved in oligomerization. The protein fold of the catalytic domains and the active-site architecture, including the FAD and substrate-binding sites, are similar to those of 4-hydroxybenzoate hydroxylase (PHBH) and phenol hydroxylase (PHHY), which are members of the GR family, providing evidence that the flavoprotein aromatic hydroxylases share similar catalytic actions for hydroxylation of the respective substrates. Structural comparison of MHBH with the homologous enzymes suggested that a large tunnel connecting the substrate-binding pocket to the protein surface serves for substrate transport in this enzyme. The internal space of the large tunnel is distinctly divided into hydrophilic and hydrophobic regions. The characteristically stratified environment in the tunnel interior and the size of the entrance would allow the enzyme to select its substrate by amphiphilic nature and molecular size. In addition, the structure of the Xe-derivative at 2.5 A resolution led to the identification of a putative oxygen-binding site adjacent to the substrate-binding pocket. The hydrophobic nature of the xenon-binding site extends to the solvent through the tunnel, suggesting that the tunnel could be involved in oxygen transport.  相似文献   
36.
The effects of nonsaturating amounts (5–60 nmol/mg membrane protein) of p-chloromercuribenzoate on the stability of unsealed erythrocyte ghosts were studied by turbidimetric measurements and direct observation by phase contrast microscopy. The organic mercurial provokes drastic disorganization of the membrane involving vesicle formation by inter- and externalization of the bilayer. These effects are not associated with a release in solution of membrane proteins which was shown in previous studies to occur at higher p-chloromercuribenzoate concentration. Attempts have been made to identify the proteins involved in this phenomenon by the use of nonsaturating amounts of radioactively-labelled p-chloromercuribenzoate. Actin and band 3 protein which are the first to be labelled, represent plausible candidates as sensitive targets for the disrupting organic mercurial. Stroma obtained from spherocytes did not show significant differences with normocytes in their stability with regard to p-chloromercuribenzoate. Other reagents including N-ethylmaleimide, diamide and DNAase I were also studied. The results suggest strongly that the integrity of the sulfhydryl groups of actin, as well as those of band 3 protein, is essential for the stability of the erythrocyte membrane.  相似文献   
37.
A dipeptidyl carboxypeptidase activity has been localized in synaptic plasma membranes which have been prepared from isolated rat brain cortical synaptosomes. The specificity of this proteolytic activity towards various synthetic and biological active peptides is compared to the peptidase activities of intact synaptosomes. In contrast to the synaptosomal peptidases which are capable of cleaving all peptide bonds of Met-enkephalin-Arg6-Phe7 the peptidase activity associated with the synaptic plasma membrane exclusively hydrolyses a dipeptide from the carboxyl terminus of all hepta- and hexapeptides tested. The fact that this dipeptidyl carboxypeptidase does not cleave the Gly3-Phe4 peptide bond of Met-enkephalin suggests that this enzyme is different from "enkephalinase". The synaptic membrane dipeptidyl carboxypeptidase is inhibited by metal chelating agents and thiols but is not affected by compounds known to inhibit serine proteases, thermolysin and "enkephalinase".  相似文献   
38.
The inhibitory effect of ouabain on (Na+ + K+)-activated ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, EC 3.6.1.3) obtained from rat brain microsomal fraction was re-examined using a modified method to estimate the inhibited reaction velocity. This method involves a preincubation of a ouabain-enzyme mixture in the presence of Na+, Mg2+ and ATP to bring the ouabain-enzyme reaction to near equilibrium. The (Na+ + K+)-activated ATPase reaction was subsequently started by the addition of a KCl solution.  相似文献   
39.
The nonsulfur purple bacterium Rps. palustris was adapted to grow photoautotrophically with thiosulfate as substrate. An isolated cell-free fraction catalyzed the enzymatic transfer of electrons from thiosulfate to endogenous and/or added mammalian cytochrome c. Antimycin A, NOQNO, rotenone, amytal and atebrin did not inhibit the thiosulfate-cytochrome c reductase. The products of thiosulfate oxidation were primarily tetrathionate, trithionate, and sulfate, suggesting oxidation via the polythionate pathway. Succinate, formate and NADH were also effective electron donors in this system showing Michaelis constants of 40, 30 and 0.025 mm, respectively for cytochrome c reduction. The NADH-cytochrome c reductase was not inhibited by flavoprotein inhibitors and by Antimycin A or NOQNO. The cell-free extracts also contained an active cytochrome c-O2 oxidoreductase which was inhibited by cyanide, azide and EDTA, and these inhibitions were overcome by the addition of Cu2+. The oxidase activity was stimulated by the addition of uncoupling agents such as CCCP and DNP, as well as by Antimycin A and NOQNO. Reduced + CO minus reduced difference absorption spectra revealed the presence of cytochrome components of the a and o types which may function as the terminal oxidase(s).  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号