首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  2021年   2篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2010年   1篇
  2008年   2篇
  2005年   2篇
  2003年   1篇
  1998年   1篇
  1994年   1篇
  1983年   1篇
排序方式: 共有27条查询结果,搜索用时 750 毫秒
11.
12.
This study investigated the effects of photobiomodulation (PBM) on upper molar intrusion movement, regarding acceleration of orthodontic movement and its molecular effects. The sample consisted of 30 patients with indication of tooth intrusion for oral rehabilitation. Teeth were divided into three different groups: G1 (n = 10) pre‐molars without force or laser application (control); G2 (n = 10) upper molar intrusion; and G3 (n = 10) upper molar intrusion and PBM. On PBM treated molars, the teeth were irradiated with a low‐power diode laser (808 nm, 100 mW), receiving 1 J per point, density of 25 J/cm2, with application of 10 s per point, 10 points (5 per vestibular and 5 per palatal region). Orthodontic force of intrusion applied every 30 days and PBM was performed immediately, 3 and 7 days after force application for 3 months. Gingival crevicular fluid was collected at the same time periods as the laser applications and interleukins (IL) 1‐β, ‐6 and ‐8 were evaluated by enzyme‐linked immunosorbent assay. Clinical measures were performed monthly to verify the amount of intrusion. The levels of IL‐6, IL‐8 and IL‐1β increased under orthodontic force (G2 and G3) when compared to control group (G1), however, the cytokines levels were significantly higher after PBM (G3). The mean intrusion velocity was 0.26 mm/month in the irradiated group (G3), average duration of 8 months vs 0.17 mm/month for the non‐irradiated group (G2), average duration of 12 months. This study suggests that PBM accelerates tooth movement during molar intrusion, due to modulation of IL‐6, IL‐8 and IL‐1β during bone remodeling.   相似文献   
13.
14.
Cutinase: Characteristics,preparation, and application   总被引:1,自引:0,他引:1  
Cutinases (E.C. 3.1.1.74) belong to the α/β-hydrolase superfamily. They were initially discovered because they are secreted by fungi to hydrolyze the ester bonds of the plant polymer cutin. Since then, they have been shown to catalyze the hydrolysis of a variety of polymers, insoluble triacylglycerols, and low-molecular-weight soluble esters. Cutinases are also capable of catalyzing esterification and transesterification reactions. These relatively small, versatile, secreted catalysts have shown promise in a number of industrial applications. This review begins by describing the characteristics of cutinases, pointing out key differences among cutinases, esterases and lipases, and reviewing recent progress in engineering improved cutinases. It continues with a review of the methods used to produce cutinases, with the goal of obtaining sufficient quantities of material for use in industrial processes. Finally, the uses of cutinases in the textile industry are described. The studies presented here demonstrate that the cutinases are poised to become important industrial catalysts, replacing older technologies with more environmentally friendly processes.  相似文献   
15.
16.
The demand for iron in leguminous plants increases during symbiosis, as the metal is utilised for the synthesis of various Fe-containing proteins in both plant and bacteroids. However, the acquisition of this micronutrient is problematic due to its low bioavailability at physiological pH under aerobic conditions. Induction of root Fe(III)-reductase activity is necessary for Fe uptake and can be coupled to the rhizosphere acidification capacity linked to the H+-ATPase activity. Fe uptake is related to the expression of a Fe2+ transporter (IRT1). In order to verify the possible role of nodules in the acquisition of Fe directly from the soil solution, the localization of H+-ATPase and IRT1 was carried out in common bean nodules by immuno-histochemical analysis. The results showed that these proteins were particularly abundant in the central nitrogen-fixing zone of nodules, around the periphery of infected and uninfected cells as well as in the vascular bundle of control nodules. Under Fe deficiency an over-accumulation of H+-ATPase and IRT1 proteins was observed especially around the cortex cells of nodules. The results obtained in this study suggest that the increase in these proteins is differentially localized in nodules of Fe-deficient plants when compared to the Fe-sufficient condition and cast new light on the possible involvement of nodules in the direct acquisition of Fe from the nutrient solution.  相似文献   
17.
18.
Ryanodine receptor channel model is introduced to a dynamical model of pancreatic beta-cells to discuss the effects of RyR channels and glucose concentration on membrane potential. The results show Ca(2+) concentration changes responding to enhance of glucose concentration is more quickly than that of activating RyR channels, and both methods can induce bursting action potential and increase free cytosolic Ca(2+) concentration. An interesting finding is that moderate stimulation to RyR channels will result in a kind of "complex bursting", which is more effective in enhancing average Ca(2+) concentration and insulin section.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号