首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50267篇
  免费   17634篇
  国内免费   294篇
  68195篇
  2023年   156篇
  2022年   276篇
  2021年   678篇
  2020年   2993篇
  2019年   4578篇
  2018年   4844篇
  2017年   4735篇
  2016年   4443篇
  2015年   4356篇
  2014年   4468篇
  2013年   4962篇
  2012年   4123篇
  2011年   4385篇
  2010年   3753篇
  2009年   2623篇
  2008年   2784篇
  2007年   2221篇
  2006年   2190篇
  2005年   1852篇
  2004年   1524篇
  2003年   1575篇
  2002年   1356篇
  2001年   980篇
  2000年   517篇
  1999年   352篇
  1998年   97篇
  1997年   101篇
  1996年   101篇
  1995年   84篇
  1994年   75篇
  1993年   76篇
  1992年   66篇
  1991年   61篇
  1990年   48篇
  1989年   43篇
  1988年   27篇
  1987年   23篇
  1985年   56篇
  1984年   85篇
  1983年   55篇
  1982年   87篇
  1981年   64篇
  1980年   46篇
  1979年   48篇
  1978年   39篇
  1977年   39篇
  1976年   30篇
  1975年   28篇
  1974年   21篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
The genus Laminaria has a wide distribution range compared with other kelp genera because it is found in both the North and the South Atlantic, on both sides of the North Pacific, as well as in the Mediterranean. Hypotheses behind this biogeographical pattern have been discussed by several authors but have not yet been fully evaluated with time‐calibrated phylogenies. Based on the analysis of four molecular markers (ITS2, rbcL, atp8 and trnWI), our goal was to reassess the Laminaria species diversity in South Africa, assess its relationship with the other species distributed in the South Atlantic and reconstruct the historical biogeography of the genus. Our results confirm the occurrence of a single species, L. pallida, in southern Africa, and its sister relationship with the North Atlantic L. ochroleuca. Both species belonged to a clade containing the other South Atlantic species: L. abyssalis from Brazil, and the Mediterranean L. rodriguezii. Our time‐calibrated phylogenies suggest that Laminaria originated in the northern Pacific around 25 mya, followed by at least two migration events through the Bering Strait after its opening (~5.32 mya). Today, the first is represented by L. solidungula in the Arctic, while the second gave rise to the rest of the Atlantic species. The colonization of the North Atlantic was followed by a gradual colonization southward along the west coast of Europe, into the Mediterranean (~2.07 mya) and two recent, but disconnected, migrations (~1.34 and 0.87 mya) across the equator, giving rise to L. abyssalis in Brazil and L. pallida in southern Africa, respectively.  相似文献   
152.
The expression level of a gene is often used as a proxy for determining whether the protein or RNA product is functional in a cell or tissue. Therefore, it is of fundamental importance to understand the global distribution of gene expression levels, and to be able to interpret it mechanistically and functionally. Here we use RNA sequencing (RNA‐seq) of mouse Th2 cells, coupled with a range of other techniques, to show that all genes can be separated, based on their expression abundance, into two distinct groups: one group comprised of lowly expressed and putatively non‐functional mRNAs, and the other of highly expressed mRNAs with active chromatin marks at their promoters. These observations are confirmed in many other microarray and RNA‐seq data sets of metazoan cell types.  相似文献   
153.
Oligodeoxyribonucleotides with terminal runs of contiguous guanines, d(AnGm), spontaneously associate into high molecular weight complexes that resolve on polyacrylamide gels as a regular ladder pattern of bands with low mobility. The aggregates, which we call frayed wires, arise from the interaction between the guanine residues of the oligonucleotides; the adenine tracts are single stranded and can take part in Watson–Crick interactions. Oligonucleotides, with different arm‐to‐stem ratios and total length, readily associate in the presence of Mg2+ to form aggregates consisting of an integer number of strands. The type of the observed aggregates is determined by the length of the guanine run. Oligonucleotides with six guanines form four‐ and eight‐stranded complexes; there is no further polymerization. An increase in the number of guanine residues to 10 and 15 leads to polymerization resulting in a ladder pattern of up to 9 bands and an intense signal at the top of the gel. The relative population of any given species in a frayed wire sample is governed by the guanine stem length and is not affected to any substantial extent by arms up to 40 bases long. The type and concentration of the cation in the solution affect the degree of aggregation, with Na+ and K+ promoting the formation of complexes comprised of 2–4 strands and Mg2+ being the most effective in facilitating polymerization. The electrophoretic behavior of frayed wires was analyzed in the framework of the Ogston theory. The free mobility of frayed wires in the solution is close to the values reported for single‐stranded DNA, indicating the equivalence of the charge density of the two conformations. The retardation coefficients for frayed wires arising from a single kind of parent strand increase with the introduction of each additional strand. There is no correlation between the retardation coefficient and the type of parent strand; rather, the magnitude of the retardation coefficient is determined by the total molecular weight of the complex. The values of the retardation coefficients are consistently higher than those for double‐stranded DNA and they display much stronger dependence on the total molecular weight. Presumably, the distinct structural and dynamic characteristics of the two conformations account for their different electrophoretic behavior. © 1999 John Wiley & Sons, Inc. Biopoly 49: 287–295, 1999  相似文献   
154.
In the cell, expression levels, allosteric modulators, post‐translational modifications, sequestration, and other factors can affect the level of protein function. For moonlighting proteins, cellular factors like these can also affect the kind of protein function. This minireview discusses examples of moonlighting proteins that illustrate how a single protein can have different functions in different cell types, in different intracellular locations, or under varying cellular conditions. This variability in the kind of protein activity, added to the variability in the amount of protein activity, contributes to the difficulty in predicting the behavior of proteins in the cell.  相似文献   
155.
Postmenopausal Osteoporosis (PMOP) is oestrogen withdrawal characterized of much production and activation by osteoclast in the elderly female. Cytisine is a quinolizidine alkaloid that comes from seeds or other plants of the Leguminosae (Fabaceae) family. Cytisine has been shown several potential pharmacological functions. However, its effects on PMOP remain unknown. This study designed to explore whether Cytisine is able to suppress RANKL‐induced osteoclastogenesis and prevent the bone loss induced by oestrogen deficiency in ovariectomized (OVX) mice. In this study, we investigated the effect of Cytisine on RAW 264.7 cells and bone marrow monocytes (BMMs) derived osteoclast culture system in vitro and observed the effect of Cytisine on ovariectomized (OVX) mice model to imitate postmenopausal osteoporosis in vivo. We found that Cytisine inhibited F‐actin ring formation and tartrate‐resistant acid phosphatase (TRAP) staining in dose‐dependent ways, as well as bone resorption by pit formation assays. For molecular mechanism, Cytisine suppressed RANK‐related trigger RANKL by phosphorylation JNK/ERK/p38‐MAPK, IκBα/p65‐NF‐κB, and PI3K/AKT axis and significantly inhibited these signalling pathways. However, the suppression of PI3K‐AKT‐NFATc1 axis was rescued by AKT activator SC79. Meanwhile, Cytisine inhibited RANKL‐induced RANK‐TRAF6 association and RANKL‐related gene and protein markers such as NFATc1, Cathepsin K, MMP‐9 and TRAP. Our study indicated that Cytisine could suppress bone loss in OVX mouse through inhibited osteoclastogenesis. All data provide the evidence that Cytisine may be a promising agent in the treatment of osteoclast‐related diseases such as osteoporosis.  相似文献   
156.
At least eight types of ubiquitin chain exist, and individual linkages affect distinct cellular processes. The only distinguishing feature of differently linked ubiquitin chains is their structure, as polymers of the same unit are chemically identical. Here, we have crystallized Lys 63‐linked and linear ubiquitin dimers, revealing that both adopt equivalent open conformations, forming no contacts between ubiquitin molecules and thereby differing significantly from Lys 48‐linked ubiquitin chains. We also examined the specificity of various deubiquitinases (DUBs) and ubiquitin‐binding domains (UBDs). All analysed DUBs, except CYLD, cleave linear chains less efficiently compared with other chain types, or not at all. Likewise, UBDs can show chain specificity, and are able to select distinct linkages from a ubiquitin chain mixture. We found that the UBAN (ubiquitin binding in ABIN and NEMO) motif of NEMO (NF‐κB essential modifier) binds to linear chains exclusively, whereas the NZF (Npl4 zinc finger) domain of TAB2 (TAK1 binding protein 2) is Lys 63 specific. Our results highlight remarkable specificity determinants within the ubiquitin system.  相似文献   
157.
158.
The self‐assembling MexA‐MexB‐OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR‐wt as well as a selected set of MDR single mutants distant from the proposed DNA‐binding helix. Although DNA affinity and MexA‐MexB‐OprM repression were both drastically impaired in the selected MexR‐MDR mutants, MexR‐wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR‐MDR mutants, secondary structure content and oligomerization properties were very similar to MexR‐wt despite their lack of DNA binding. Despite this, the MexR‐MDR mutants showed highly varying stabilities compared with MexR‐wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA‐binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR‐wt in both free and DNA‐bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations—stability, domain interactions, and internal hydrophobic surfaces—are also critical for the regulation of MexR DNA binding.  相似文献   
159.
Aggregation of α‐synuclein (αS) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, αS binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age‐dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous αS. In contrast, siRNA‐mediated downregulation of αS results in elongated mitochondria in cell culture. αS can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, αS prevents fusion of differently labelled mitochondrial populations. Thus, αS inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of αS is rescued by coexpression of PINK1, parkin or DJ‐1 but not the PD‐associated mutations PINK1 G309D and parkin Δ1–79 or by DJ‐1 C106A.  相似文献   
160.
Hexapeptides such as Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH(2) and Ac-Arg-Tyr-Tyr-Arg-Trp-Arg-NH(2) have been isolated from a combinatorial peptide library as small peptide ligands for the opioid peptide-like 1 (ORL1) receptor. To investigate the detailed structural requirements of hexapeptides, 25 analogs of these hexapeptides, based on the novel analog Ac-Arg-Tyr-Tyr-Arg-Ile-Arg-NH(2) (1), were synthesized and tested for their ORL1 receptor affinity and agonist/antagonist activity on mouse vas deferens (MVD) tissues. Analog 1 and its Cit(6)-analog (10) were found to possess high affinity to the ORL1 receptor, comparable to that of nociceptin/orphanin FQ, and exhibited potent antagonist activity (pA(2) values of 7.77 for 1 and 7.51 for 10, which are higher than that of [NPhe(1)]nociceptin(1-13)-NH(2) (6.90) on MVD assay. It was also found that the amino acid residue in position 5 plays a key role in agonist/antagonist activity, i.e. an L-configuration aliphatic amino acid is required for potent antagonist activity, while a nonchiral or D-configuration residue produces potent agonist activity. These lines of evidence may provide insight into the mechanisms controlling agonist/antagonist switching in the ORL1 receptor, and may also serve to help developing more potent ORL1 agonists and antagonists.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号