首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72880篇
  免费   5146篇
  国内免费   3350篇
  2024年   131篇
  2023年   1050篇
  2022年   1699篇
  2021年   2376篇
  2020年   2236篇
  2019年   2513篇
  2018年   2504篇
  2017年   1813篇
  2016年   1791篇
  2015年   2328篇
  2014年   4305篇
  2013年   5397篇
  2012年   3253篇
  2011年   4370篇
  2010年   3374篇
  2009年   3759篇
  2008年   3826篇
  2007年   3903篇
  2006年   3480篇
  2005年   3125篇
  2004年   2791篇
  2003年   2347篇
  2002年   2108篇
  2001年   1467篇
  2000年   1223篇
  1999年   1257篇
  1998年   1154篇
  1997年   1019篇
  1996年   944篇
  1995年   868篇
  1994年   791篇
  1993年   732篇
  1992年   635篇
  1991年   603篇
  1990年   481篇
  1989年   435篇
  1988年   401篇
  1987年   371篇
  1986年   332篇
  1985年   456篇
  1984年   642篇
  1983年   489篇
  1982年   533篇
  1981年   381篇
  1980年   365篇
  1979年   311篇
  1978年   227篇
  1977年   177篇
  1976年   146篇
  1975年   133篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
211.
Summary Three high marsh communities on the Chesapeake Bay were exposed to a doubling in ambient CO2 concentration for one growing season. Open-top chambers were used to raise CO2 concentrations ca. 340 ppm above ambient over monospecific communities of Scirpus olneyi (C3) and Spartina patens (C4), and a mixed community of S. olneyi, S. patens, and Distichlis spicata (C4). Plant growth and senescence were monitored by serial, nondestructive censuses. Elevated CO2 resulted in increased shoot densities and delayed sensecence in the C3 species. This resulted in an increase in primary productivity in S. olneyi growing in both the pure and mixed communities. There was no effect of CO2 on growth in the C4 species. These results demonstrate that elevated atmospheric CO2 can cause increased aboveground production in a mature, unmanaged ecosystem.  相似文献   
212.
The Mg2+-dependent activity of the tonoplast pyrophosphatase (PPase) was investigated by measuring proton transport and by using the acridine orange technique on intact vacuoles of the aquatic liverwort Riccia fluitans L. In solutions with both Mg2+ and pyrophosphate present, a number of complexes are formed, which could all influence the enzymatic and hence the transport activity of the PPase. Therefore, the individual concentrations of these complexes were calculated and their contributions to proton transport across the tonoplast were tested. From these experiments we conclude that Mg2+ has three different roles: (i) Mg2+ stimulates transport activity of the PPase. (ii) Mg2PPi inhibits PPase-mediated H+ transport, (iii) MgPPi* (= MgPPi2-+ MgHPPi-) is the substrate with an apparent K1/2= 5–10 μM, with no discrimination between MgPPi2- and MgHPPi-.  相似文献   
213.
Summary Detailed growth analysis in conjunction with information on leaf display and nitrogen uptake was used to interpret competition between Abutilon theophrasti, a C3 annual, and Amaranthus retroflexus, a C4 annual, under ambient (350 l l-1) and two levels of elevated (500 and 700 l l-1) CO2. Plants were grown both individually and in competition with each other. Competition caused a reduction in growth in both species, but for different reasons. In Abutilon, decreases in leaf area ratio (LAR) were responsible, whereas decreased unit leaf rate (ULR) was involved in the case of Amaranthus. Mean canopy height was lower in Amaranthus than Abutilon which may explain the low ULR of Amaranthus in competition. The decrease in LAR of Abutilon was associated with an increase in root/shoot ratio implying that Abutilon was limited by competition for below ground resources. The root/shoot ratio of Amaranthus actually decreased with competition, and Amaranthus had a much higher rate of nitrogen uptake per unit of root than did Abutilon. These latter results suggest that Amaranthus was better able to compete for below ground resources than Abutilon. Although the growth of both species was reduced by competition, generally speaking, the growth of Amaranthus was reduced to a greater extent than that of Abutilon. Regression analysis suggests that the success of Abutilon in competition was due to its larger starting capital (seed size) which gave it an early advantage over Amaranthus. Elevated CO2 had a positive effect upon biomass in Amaranthus, and to a lesser extent, Abutilon. These effects were limited to the early part of the experiment in the case of the individually grown plants, however. Only Amaranthus exhibited a significant increase in relative growth rate (RGR). In spite of the transitory effect of CO2 upon size in individually grown plants, level of CO2 did effect final biomass of competitively grown plants. Abutilon grown in competition with Amaranthus had a greater final biomass than Amaranthus at ambient CO2 levels, but this difference disappeared to a large extent at elevated CO2. The high RGR of Amaranthus at elevated CO2 levels allowed it to overcome the difference in initial size between the two species.This study was supported by a grant from the US Department of Energy  相似文献   
214.
A field experiment was conducted at the Bangladesh Rice Research Institute, Joydebpur, Dhaka during the late wet season. Basal application of P at both 5 and 10 kg ha−1 significantly increased total biomass production and nitrogen fixation byAzolla pinnata R. Brown (local strain). Addition of both 5 and 10 kg P ha−1 in equal splits at inoculation and at six day intervals thereafter during growth periods of 12, 24 and 36 days increased biomass production and nitrogen fixation by Azolla over that attained with the basal application. Biomass and nitrogen fixation using a split application of 5 kg P ha−1 exceeded that attained with basal application of 10 kg P ha−1 and split application of 10 kg P ha−1 resulted in 0.58, 11.2, and 18.3 t ha−1 more biomass, and 0.47, 18.9, and 18.3 more kg fixed N ha−1 at 12, 24 and 36 days, respectively, than the same amount applied as a basal application. Analyses indicated that the critical level of dry weight P in Azolla for sustained growth was in the range of 0.15–0.17%. Compared with the control, where no P was added, and additional 30 and 36 kg N ha−1 were fixed after 24 and 36 days, respectively, when P was provided at 10 kg ha−1 using a split application. A separate field study showed that flooded rice plants received P from incorporated Azolla with about 28% of the P present in the supplied Azolla being incorporated into the rice plants.  相似文献   
215.
Alfalfa (Medicago sativa L.) growth and nodulation in acid soil is reduced because the plant and its bacterial symbiontRhizobium meliloti cannot tolerate acid, aluminum-rich soil. A study was conducted to determine if a relatively acid-tolerant alfalfa germplasm combined with a relatively acid-tolerantR. meliloti strain could overcome these limitations. In a light room study, an acid-tolerant alfalfa germplasm inoculated with a more acid-tolerantR. meliloti strain produced greater top growth, nodule number and weight, and acetylene reduction values in an unlimed soil (pH 4.6) than the same germplasm inoculated with a relatively acid-sensitiveR. meliloti strain or an acid-sensitive germplasm inoculated with either a relatively acid-tolerant or acid-sensitiveR. meliloti strain.  相似文献   
216.
Careful cutting of the hypocotyl of Ricinus communis L. seedlings led to the exudation of pure sieve-tube sap for 2–3 h. This offered the possibility of testing the phloem-loading system qualitatively and quantitatively by incubating the cotyledons with different solutes of various concentrations to determine whether or not these solutes were loaded into the sieve tubes. The concentration which was achieved by loading and the time course could also be documented. This study concentrated on the loading of sucrose because it is the major naturally translocated sieve-tube compound. The sucrose concentration of sieve-tube sap was approx. 300 mM when the cotyledons were buried in the endosperm. When the cotyledons were excised from the endosperm and incubated in buffer, the sucrose concentration decreased gradually to 80–100 mM. This sucrose level was maintained for several hours by starch breakdown. Incubation of the excised cotyledons in sucrose caused the sucrose concentration in the sieve tubes to rise from 80 to 400 mM, depending on the sucrose concentration in the medium. Thus the sucrose concentration in the sieve tubes could be manipulated over a wide range. The transfer of labelled sucrose to the sieve-tube sap took 10 min; full isotope equilibration was finally reached after 2 h. An increase of K+ in the medium or in the sieve tubes did not change the sucrose concentration in the sievetube sap. Similarly the experimentally induced change of sucrose concentration in the sieve tubes did not affect the K+ concentration in the exudate. High concentrations of K+, however, strongly reduced the flow rate of exudation. Similar results were obtained with Na+ (data not shown). The minimum translocation speed in the sieve tubes in vivo was calculated from the growth increment of the seedling to be 1.03 m·h-1, a value, which on average was also obtained for the exudation system with the endosperm attached. This comparison of the in-vivo rate of phloem transport and the exudation rate from cut hypocotyls indicates that sink control of phloem transport in the seedlings of that particular age was small, if there was any at all, and that the results from the experimental exudation system were probably not falsified by removal of the sink tissues.Abbreviations PTS 3-hydroxy-5,8, 10-pyrenetrisulfonate  相似文献   
217.
Two NADP-isocitrate dehydrogenase isoenzymes designated as NADP-IDH1 and NADP-IDH2 (EC 1.1.1.42) were identified in pea (Pisum sativum) leaf extracts by diethylaminoethylcellulose chromatography. The predominant form was found to be NADP-IDH1 while NADP-IDH2 represented only about 4% of the total leaf enzyme activity. These enzymes share few common epitopes as NADP-IDH2 was poorly recognized by the specific polyclonal antibodies raised against NADP-IDH1, and as a consequence NADP-IDH2 does not result from a post-translational modification of NADP-IDH1. Subcellular fractionation and isolation of chloroplasts through a Percoll gradient, followed by the identification of the associated enzymes, showed that NADP-IDH1 is restricted to the cytosol and NADP-IDH2 to the chloroplasts. Compared with the cytosolic isoenzyme, NADP-IDH2 was more thermolabile and exhibited a lower optimum pH. The data reported in this paper constitute the first report that the chloroplastic NADP-IDH and the cytosolic NADP-IDH are two distinct isoenzymes. The possible functions of the two isoenzymes are discussed.Abbreviations BSA bovine serum albumin - DEAE diethylaminoethyl - NADP-IDH NADP-isocitrate dehydrogenase - NADP-IDH1 cytosolic NADP-IDH - NADP-IDH2 chloroplastic NADP-IDH  相似文献   
218.
Nitrate reduction in roots and shoots and exchange of reduced N between organs were quantitatively estimated in intact 13-d-old seedlings of two-row barley (Hordeum vulgare L. cv. Daisengold) using the 15N-incorporation model (A. Gojon et al. (1986) Plant Physiol. 82, 254–260), except that NH + 4 was replaced by NO - 2 . N-depleted seedlings were exposed to media containing both nitrate (1.8 mM) and nitrite (0.2 mM) under a light-dark cycle of 12:12 h at 20°C; the media contained different amounts of 15N labeling. Experiments were started either immediately after the beginning (expt. 1) or immediately prior to the end (expt. 2) of the light period, and plants were sampled subsequently at each light-dark transition throughout 36 h. The plants effectively utilized 15NO - 3 and accumulated it as reduced 15N, predominantly in the shoots. Accumulation of reduced 15N in both experiments was nearly the same at the end of the experiment but the accumulation pattern in roots and shoots during each 12-h period differed greatly depending on time and the light conditions. In expt. 1, the roots accounted for 31% (light), 58% (dark), and 9% (light) of nitrate reduction by the whole plants, while in expt. 2 the contributions of the root were 82% (dark), 20% (light), and 29% (dark), during each of the three 12-h periods. Xylem transport of nitrate drastically decreased in the dark, but that of reduced N rather increased. The downward translocation of reduced 15N increased while nitrate reduction in the root decreased, whereas upward translocation decreased while nitrate reduction in the shoot increased. We conclude that the cycling of reduced N through the plant is important for N feeding of each organ, and that the transport system of reduced N by way of xylem and phloem, as well as nitrate reduction by root and shoot, can be modulated in response to the relative magnitude of reduced-N demands by the root and shoot, with the one or the other predominating under different circumstances.Symbols Anl accumulation of reduced 15N from 15NO - 3 in 14NO - 3 -fed roots of divided root system - Ar accumulation in root of reduced 15N from 15NO - 3 - As accumulation in shoot of reduced 15N from 15NO - 3 - Rr 15NO - 3 reduction in root - Rs 15NO - 3 reduction in shoot - Tp translocation to root of shoot-reduced 15N from 15NO - 3 in phloem - Tx translocation to shoot of root-reduced 15N from 15NO - 3 in xylem  相似文献   
219.
Recent studies have implicated accelerated sarcolemmal phospholipid catabolism as a mediator of the lethal sequelae of atherosclerotic heart disease. We have demonstrated that plasmalogens are the predominant phospholipid constituents of canine myocardium and that plasmalogens are hydrolyzed by a novel calcium independent plasmalogen selective phospholipase A2. Since the activities of phospholipases are modulated by the molecular dynamics and interfacial characteristics of their phospholipid substrates, we compared the molecular dynamics of plasmenylcholine and phosphatidylcholine vesicles by electron spin resonance spectroscopy and deuterium magnetic resonance spectroscopy. Plasmenylcholine vesicles have separate and distinct molecular dynamics in comparisons to their phosphatidylcholine counterparts as ascertained by substantial decreases in the angular fluctuations and motional velocities of probes attached to their sn-2 aliphatic constituents. Furthermore, since free radical oxidation of myocardial lipid constituents occurs during myocardial ischemia and reperfusion, we demonstrated that 1O2 mediated oxidation of plasmenylcholine resulted in the generation of several products which have chromatographic characteristics and molecular masses corresponding to 2-acyl lysophosphatide derivatives. Taken together, these studies underscore the biologic significance of the predominance of sarcolemmal plasmalogens present in mammalian myocardium and suggest that their catabolism by plasmalogen selective phospholipases and/or oxidative processes may contribute to the lethal sequelae of myocardial ischemia.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号