首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   2篇
  国内免费   16篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   8篇
  2013年   12篇
  2012年   11篇
  2011年   16篇
  2010年   4篇
  2009年   5篇
  2008年   13篇
  2007年   9篇
  2006年   6篇
  2005年   9篇
  2004年   3篇
  2003年   10篇
  2002年   2篇
  2001年   3篇
  2000年   8篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1989年   2篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
81.
Phenylacetic hopanetetrol is a Frankia specific lipid present in vesicles. Phenylacetic acid (PAA) is known as an auxinomimetic, exhibiting the same effect on plant growth as indole acetic acid (IAA). We hypothesize that PAA, only bound by an ester link to the hopanetetrol basic unit, would be easily released and could thus play a role in nodule formation. HPLC and mass spectrometry analysis allowed us to show that 2 Alnus- (ACoN24d and ACN14a) and 2 Elaeagnus-infective strains (EaI1 and EaI3) released PAA into the culture medium, at concentrations of about 10–5 to 10–6 M, whereas IAA was not detected. Furthermore, exogenous PAA added to axenically-grown Alnus glutinosa roots at a concentration of 5×10–5 M, resulted in the formation of thick, short lateral roots which resembled actinorhizal nodules. phenylalanine ammonia lyase (PAL) and chalcone syntase (CHS) induction by incompatible and compatible Frankia strains in A. glutinosa roots and the different contents in salicylic acid precursors (cinnamic acid and benzoic acid) observed between nodules and roots support the idea that PAA would be produced in nodules to the detriment of salicylic acid production. These results provide evidence that in actinorhizal root nodules, phenylpropanoid metabolism may play a multiple role in symbiotic interactions including the limitation of the induction of the systematic acquired resistance (SAR) by the plant.  相似文献   
82.
AM真菌和胞囊线虫对大豆根内酶活性的影响   总被引:2,自引:0,他引:2  
将‘鲁豆4号’大豆接种丛枝菌根(AM)真菌聚生球囊霉Glomus fasiculatum和大豆胞囊线虫(SCN)Heterodera glycines 4号生理小种后, 定期测定大豆根系中AM真菌及线虫侵染速率、过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)、β-1,3葡聚糖酶及几丁质酶活性的动态变化。结果表明, 接种AM真菌大豆根系中4种酶活性高于对照水平; 先接种AM真菌后接种SCN处理根系中POD、PAL及几丁质酶的活性高于只接种SCN的处理,并且酶活性峰值出现的时间均早于或相当于后者。另外,PAL及几丁质酶活性出现高峰时期也正是AM真菌侵染率迅速升高及线虫侵染速率快速下降期。因此,AM真菌先激活了大豆的防御反应,然后使其对SCN的侵染产生快速反应,PAL及几丁质酶在AM真菌诱导的抗、耐线虫病害机制中起重要作用。值得注意的是,先接种AM真菌后接种SCN处理大豆根系中,β-1,3葡聚糖酶活性低于只接种AM真菌的处理。作者认为本试验条件下,该酶在大豆抗SCN病害中的作用表现不明显。  相似文献   
83.
苦荞在中国具有广泛的栽培种植地区,长时间演化形成了丰富的遗传多样性。为了研究和利用苦荞资源,以国内北方苦荞产区(内蒙古、青海、陕西、山西、甘肃)、西南苦荞产区(西藏、四川、贵州、云南)、国内其他地方品种(江西、安徽、湖北、湖南、广西)及国外品种(尼泊尔)共计67份苦荞材料为研究对象,PCR扩增其PAL基因并测序。在此基础上分析苦荞的遗传多样性,并采用NJ法(neighbor-joining)对67份苦荞材料构建系统进化树。结果表明,供试的67份苦荞材料的PAL基因序列长度为2011 bp,其中,变异位点为160个,占序列总长度的7.9%,简约信息位点为33个,占序列总长度的1.64%,突变的类型主要是碱基的转换与颠换,高变异位点均集中在外显子2的N端。不同来源的苦荞材料间的遗传距离分布于0.002~0.016之间,来源于中国四川组的苦荞材料种内平均遗传距离最大(0.016),中国内蒙古组的最小(0.002)。中国四川地区的材料与其他地区来源的材料间的遗传距离位于0.010~0.016之间,而其他地区间的遗传距离为0.004~0.013。67份苦荞材料的平均π值和θ值分别为0.0034和0.0143。其中,中国四川材料的π值为0.0148。基于PAL基因序列构建的NJ进化树中,67份苦荞材料分为7个类群,分类与地理来源无关。仅中国西藏来源的5份材料聚集为一类,说明PAL基因序列较为稳定,多数材料间变化差异较小。中国四川地区的苦荞材料具有丰富的遗传多样性,中国西藏地区的某一材料中有较多的SNP位点,推测中国西藏的部分材料可能存在突变的热点区,预示着PAL基因新的突变位点区域。  相似文献   
84.
Inducers of disease resistance in crop plants have a role in sustainable agriculture. We describe a set of bacteriocins that can potentially improve plant growth by controlling specific pathogens and inducing generalized resistance. Solutions of the bacteriocin thuricin 17 and/or a chitin hexamer (a known inducer and positive control) were applied to leaves of two-week-old soybean plants, and levels of lignification-related and antioxidative enzymes were monitored. Phenyl ammonia lyase (PAL) activity in thuricin 17-treated leaves was highest at 60 h after treatment, being 61.8% greater than the control. PAL activity also was increased 18.1% at 72 h after treatment with the chitin hexamer. Tyrosine ammonia lyase (TAL) activity in leaves was 57.0% higher than the control at 48 h after treatment with thuricin 17, while such activity in chitin hexamer-treated leaves was increased by 23.8% at 72 h. At 36 h after treatment with the chitin hexamer or chitin hexamer + thuricin 17, the total concentration of phenolic compounds was 15.3 or 19.3%, respectively, greater than the control. At 72 h, total phenolic concentrations increased by 23.2 and 19%, respectively, in response to thuricin 17 and chitin hexamer + thuricin 17. POD activity in thuricin 17-treated leaves increased by 74.6 and 81.2% at 48 and 72 h, respectively, whereas SOD activity increased by 24.9 and 79.9%, respectively, in chitin hexamer- and thuricin 17-treated leaves at 48 h. A peroxidase isozyme (31 kDa isomer) was induced in thuricin 17-treated leaves at 60 h, while catalase (59 kDa isomer) was induced in chitin hexamer-treated leaves. PAGE showed that two major SOD bands (Fe-SODs) were produced by both types of treatment. Collectively, these results indicate that the bacteriocin thuricin 17 can act as an inducer of plant disease defenses (i.e., activated lignification-related enzymes, antioxidative enzymes, and related isozymes) and that this induction is similar, but not identical, to that of the chitin hexamer elicitor. Although treatment with thuricin 17 + chitin hexamer also induced those responses, it did not present a clear pattern of additivity or synergy.  相似文献   
85.
86.
苯丙氨酸解氨酶在诱导黄瓜幼苗抗寒性中的作用   总被引:2,自引:2,他引:0  
为了探讨苯丙氨酸解氨酶(PAL)在诱导黄瓜幼苗抗寒性中的作用,采用喷施特异抑制剂(AOPP)的方法控制PAL活性,测定幼苗抗寒性的变化.结果表明: 低温可以诱导黄瓜幼苗叶片中PAL的基因表达和活性升高;喷施AOPP显著抑制了叶片中PAL活性,减少了酚类和类黄酮物质的积累.低温对黄瓜幼苗造成显著伤害,AOPP预处理加剧了低温对幼苗的损伤,幼苗抗寒性降低.与对照相比,幼苗叶片中相对电解质渗漏率和丙二醛(MDA)含量显著升高,PSII最大光化学效率(Fv/Fm)降低,光化学猝灭参数Y(NO)升高,胁迫相关基因(PR1-1a、COR47、P5CS、HSP70)的诱导表达受到抑制.低温导致黄瓜幼苗叶片中H2O2积累,还原型抗坏血酸(AsA)含量降低,脱氢抗坏血酸(DHA)含量升高,AsA∶DHA减小;喷施AOPP的幼苗中抗氧化酶(过氧化氢酶CAT、抗坏血酸过氧化物酶APX)活性显著低于对照,H2O2过量积累,AsA∶DHA更低.施用H2O2清除剂可以有效缓解喷施AOPP引起的低温损伤加剧,而施用CAT抑制剂的幼苗对低温胁迫更敏感.表明低温诱导了PAL活性升高,促进了苯丙烷类次生代谢产物的合成,提高了胞内抗氧化酶活性,可有效清除活性氧分子,维持AsA氧化还原状态,缓解低温引起的光损伤和氧化损伤.  相似文献   
87.
Understanding regulation of phenolic metabolism underpins attempts to engineer plants for diverse properties such as increased levels of antioxidant flavonoids for dietary improvements or reduction of lignin for improvements to fibre resources for industrial use. Previous attempts to alter phenolic metabolism at the level of the second enzyme of the pathway, cinnamate 4-hydroxylase have employed antisense expression of heterologous sequences in tobacco. The present study describes the consequences of homologous sense expression of tomato CYP73A24 on the lignin content of stems and the flavonoid content of fruits. An extensive number of lines were produced and displayed four developmental variants besides a normal phenotype. These aberrant phenotypes were classified as dwarf plants, plants with distorted (curly) leaves, plants with long internodes and plants with thickened waxy leaves. Nevertheless, some of the lines showed the desired increase in the level of rutin and naringenin in fruit in a normal phenotype background. However this could not be correlated directly to increased levels of PAL and C4H expression as other lines showed less accumulation, although all lines tested showed increases in leaf chlorogenic acid which is typical of Solanaceous plants when engineered in the phenylpropanoid pathway. Almost all transgenic lines analysed showed a considerable reduction in stem lignin and in the lines that were specifically examined, this was correlated with partial sense suppression of C4H. Although not the primary purpose of the study, these reductions in lignin were amongst the greatest seen in plants modified for lignin by manipulation of structural genes. The lignin showed higher syringyl to coniferyl monomeric content contrary to that previously seen in tobacco engineered for downregulation of cinnamate 4-hydroxylase. These outcomes are consistent with placing CYP73A24 more in the lignin pathway and having a role in flux control, while more complex regulatory processes are likely to be involved in flavonoid and chlorogenic acid accumulation.  相似文献   
88.
以蚕豆(ViciafabaL.)幼苗为材料,结合不同的光强及黑暗对茎中内皮层形成的影响,对参与栓化作用有关的酶活性及内源抗氧化物质的含量进行了测定,并讨论了光对内皮层形成的调节机制。实验结果表明,高光强抑制茎中内皮层形成,而低光强和黑暗诱导茎中形成内皮层。在低光强和暗中,脂肪氧化酶在内皮层栓化前期活性显著增加,可能与栓化作用的启动有关,而高光强下LOX始终处在较低水平。PAL活性为光所诱导,与内皮层的栓化没有直接的相关性。在高光强条件下生长的幼苗茎中抗坏血酸和谷胱甘肽含量比低光强和暗中的高。外源施用抗坏血酸,可抑制低光强下茎内皮层的栓化,而对暗中茎内皮层的栓化无影响。推测高强度光对栓化作用的抑制原因可能是高光强下植物体内有高含量的抗氧化物质,并具备更有利的活性氧清除途径,从而抑制了栓化作用的进行  相似文献   
89.
Roots of clonal birches ( Betula pendula ) were inoculated with the ectomycorrhizal fungi Paxillus involutus (isolates P0 and Mi) and Hebeloma cylindrosporum (strains D1 and D105). These fungi showed different rates of mycorrhiza formation in vitro . Mature mycorrhizas were obtained after only 2–4 d with H. cylindrosporum , whereas 6–8 d were necessary with P. involutus isolate P0, and P. involutus isolate Mi was not able to form mature mycorrhiza during the 10 d of the experiment. Temporal changes in PAL activity and the expression of genes encoding intracellular pathogenesis-related proteins were followed after inoculating birch roots with these fungi. Transient increase of PAL activity, and transient induction of expression of the wound-inducible Bet v1-SC1 gene, were observed in roots challenged with both H. cylindrosporum strains and the P. involutus isolate P0. These changes were found to coincide with hyphal penetration between root cells during Hartig net formation, and were never observed in roots inoculated with the poorly aggressive P. involutus isolate Mi. Examination of mycorrhizal root sections under u.v. light indicated the presence of phenolic compounds in the host cell walls at the vicinity of the Hartig net. These results strongly suggest that hyphal penetration between the root cells triggers a transient defence response which, in turn, could limit Hartig net formation to the outer layer of the root cortex.  相似文献   
90.
Photocontrol of chlorogenic acid biosynthesis in potato tuber discs   总被引:2,自引:0,他引:2  
The appearance of phenylalanine ammonia-lyase activity and the accumulation of chlorogenic acid in potato tuber discs are stimulated by illumination with white light, whereas the appearance of cinnamic acid 4-hydroxylase activity is unaffected by illumination. The photosensitive step in chlorogenic acid biosynthesis may be by-passed by treatment of discs with exogenous supplies of cinnamic acid, whereas treatment of discs with phenylalanine does not isolate the photosensitive step. Therefore, the site of photocontrol of chlorogenic acid biosynthesis in potato tuber discs is the reaction catalysed by phenylalanine ammonia-lyase. Cinnamic acid 4-hydroxylase activity in vitro is unaffected by p-coumaric acid, caffeic acid or chlorogenic acid. Phenylalanine ammonia-lyase activity in vitro is sensitive to inhibition by cinnamic acid. The in vitro properties of the two enzymes are also consistent with the hypothesis that phenylalanine ammonia-lyase rather than cinnamic acid 4-hydroxylase is important in the regulation of chlorogenic acid biosynthesis in potato tuber discs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号