首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21532篇
  免费   1117篇
  国内免费   577篇
  23226篇
  2024年   32篇
  2023年   250篇
  2022年   410篇
  2021年   519篇
  2020年   488篇
  2019年   715篇
  2018年   736篇
  2017年   397篇
  2016年   520篇
  2015年   658篇
  2014年   1336篇
  2013年   1553篇
  2012年   867篇
  2011年   1335篇
  2010年   946篇
  2009年   1032篇
  2008年   1199篇
  2007年   1195篇
  2006年   1098篇
  2005年   963篇
  2004年   868篇
  2003年   727篇
  2002年   706篇
  2001年   440篇
  2000年   395篇
  1999年   404篇
  1998年   432篇
  1997年   357篇
  1996年   309篇
  1995年   320篇
  1994年   286篇
  1993年   223篇
  1992年   189篇
  1991年   166篇
  1990年   143篇
  1989年   122篇
  1988年   109篇
  1987年   106篇
  1986年   80篇
  1985年   85篇
  1984年   109篇
  1983年   97篇
  1982年   86篇
  1981年   67篇
  1980年   62篇
  1979年   41篇
  1978年   19篇
  1977年   13篇
  1976年   5篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
For the development of a biomimetic odor-sensing system, we investigated the effects of replacing the N-terminus of an olfactory receptor (OR) on its functional expression in the budding yeast, Saccharomyces cerevisiae. Using the mouse olfactory receptor OR226 (mOR226), three types of chimeric ORs were constructed by replacing N-terminal regions of mOR226 with the corresponding regions of the rat I7 receptor, which is known to be functionally expressed in yeast. The replacement of the N-terminal region of mOR226 dramatically affected the expression and localization of the receptor and improved the sensing ability of the yeast cells for the odorant. Furthermore, the replacement of the endogenous yeast G-protein α subunit (Gpa1) by the OR-specific G(olf) drastically elevated the odorant-sensing ability of the yeast cells and caused the cells to display a dose-dependent responsiveness to the odorant. Because of the suitability of yeast cells for screening large-scale libraries, the strategy presented here would be useful for the establishment of advanced biomimetic odor-sensing systems.  相似文献   
932.
Proteinase activated-receptor 2 (PAR2) participates in cancer metastasis promoted by serine proteinases. The current study aimed to test the molecular mechanism by which PAR2 promotes cancer cell migration. In different cancer cells, activation of PAR2 by activating peptide (PAR2-AP) dramatically increased cell migration, whereas knock down of PAR2 inhibited cellular motility. The PAR2 activation also repressed miR-125b expression while miR-125b mimic successfully blocked PAR2-induced cell migration. Moreover, Grb associated-binding protein 2 (Gab2) was identified as a novel target gene of miR-125b and it mediated PAR2-induced cell migration. The correlation of PAR2 with miR-125b and Gab2 was further supported by the findings obtained from human colorectal carcinoma specimens. Remarkably, knock down of NOP2/Sun domain family, member 2 (NSun2), a RNA methyltransferase, blocked the reduction in miR-125b induced by PAR2. Furthermore, PAR2 activation increased the level of N6-methyladenosine (m6A)-containing pre-miR-125b in NSun2-dependent manner. Taken together, our results demonstrated that miR-125b mediates PAR2-induced cancer cell migration by targeting Gab2 and that NSun2-dependent RNA methylation contributes to the down-regulation of miR-125b by PAR2 signaling. These findings suggest a novel epigenetic mechanism by which microenvironment regulates cancer cell migration by altering miRNA expression.  相似文献   
933.
The melanocortin-3 receptor (MC3R) is primarily expressed in the hypothalamus and plays an important role in the regulation of energy homeostasis. Recently, some studies demonstrated that MC3R also signals through mitogen-activated protein kinases (MAPKs), especially extracellular signal-regulated kinases 1 and 2 (ERK1/2). ERK1/2 signaling is known to alter gene expression, potentially contributing to the prolonged action of melanocortins on energy homeostasis regulation. In the present study, we performed detailed functional studies on 8 novel naturally occurring MC3R mutations recently reported, and the effects of endogenous MC3R agonist, α-melanocyte stimulating hormone (MSH), on ERK1/2 signaling on all 22 naturally occurring MC3R mutations reported to date. We found that mutants D158Y and L299V were potential pathogenic causes to obesity. Four residues, F82, D158, L249 and L299, played critical roles in different aspects of MC3R function. α-MSH exhibited balanced activity in Gs-cAMP and ERK1/2 signaling pathways in 15 of the 22 mutant MC3Rs. The other 7 mutant MC3Rs were biased to either one of the signaling pathways. In summary, we provided novel data about the structure-function relationship of MC3R, identifying residues important for receptor function. We also demonstrated that some mutations exhibited biased signaling, preferentially activating one intracellular signaling pathway, adding a new layer of complexity to MC3R pharmacology.  相似文献   
934.
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Myocardial dysfunction, often termed sepsis-induced cardiomyopathy, is a frequent complication and is associated with worse outcomes. Numerous mechanisms contribute to sepsis-induced cardiomyopathy and a growing body of evidence suggests that bioenergetic and metabolic derangements play a central role in its development; however, there are significant discrepancies in the literature, perhaps reflecting variability in the experimental models employed or in the host response to sepsis. The condition is characterised by lack of significant cell death, normal tissue oxygen levels and, in survivors, reversibility of organ dysfunction. The functional changes observed in cardiac tissue may represent an adaptive response to prolonged stress that limits cell death, improving the potential for recovery. In this review, we describe our current understanding of the pathophysiology underlying myocardial dysfunction in sepsis, with a focus on disrupted mitochondrial processes.  相似文献   
935.
This study investigated whether contact with the olfactory bulb was necessary for developing and renewing olfactory receptor neurons (ORNs) to attain normal odorant responsiveness, and whether the anatomical and functional recoveries of the olfactory epithelium were similar in both bulbectomized (BE) and bilaterally axotomized (AX) preparations. In vivo electrophysiological recordings were obtained in response to amino acids, a bile acid [taurolithocholic acid sulfate(TLCS)] and a pheromonal odorant [17α, 20β,-dihydroxy-4-pregnen-3-one (17,20P)] from sexually immature goldfish. Both transmission and scanning electron microscopy indicated that the olfactory epithelium degenerated in BE and AX goldfish. Within 1–2 weeks subsequent to the respective surgeries, responses to high concentrations (>0.1 mmol · l−1) of the more stimulatory amino acids remained, whereas responses were no longer obtainable to TLCS and 17,20P. At 4 weeks, responses to amino acid stimuli recovered to control levels, while responses to TLCS and 17,20P were minimal. By 7 weeks post bilateral axotomy, the olfactory epithelium recovered to a condition similar to control sensory epithelium; however, the rate of degeneration and proliferation of receptor neurons in BE preparations appeared to remain in balance, thus blocking further recovery of the olfactory epithelium. At 7 weeks post surgery, odorant responses of AX and BE goldfish to TLCS and 17,20P were still recovering. Accepted: 14 June 1997  相似文献   
936.
Due to the variant functions that estrogens play in the regulation of reproduction, development of the mammary gland, growth and differentiation of cells, estrogen receptors and their genes are considered as a candidates for the markers of production and functional traits in farm animals, including cattle. In the earliest study, a 2853-bp bovine ER gene 5′-region was PCR amplified and sequenced. Moreover, for the first time, a polymorphism was described within 5′ region of the bovine ERα gene—A/G transition lying upstream at position 2591 from acceptor splice site +85, possibly within its promoter—which could be recognized with RFLP-BglI. In other study we are found second polymorphism—A/G transition at position 1213 from acceptor splice site +85, located in promoter for exon B. We have examined the specific mRNA expression of ERα in various genotypes using real-time RT-PCR. We used four animals from each genotype group—AG, GG for BglI and AA, AG for SnaBI—to analyse liver ERα expression at the level of Real-time PCR. Liver samples were taken from the 16 young Friesian bulls of the different ERα genotypes, slaughtered at the local abattoir. As shown by Real-Time PCR, on the livers of animals with different genotype ERα mRNA for BglI polymorphism we didn’t found variability, but for SnaBI we have found variability between AG and AA genotypes.  相似文献   
937.
Ginseng has been shown to have memory-improving effects in human. However, little is known about the active components and the molecular mechanisms underlying its effects. Recently, we isolated novel lysophosphatidic acids (LPAs)-ginseng protein complex derived from ginseng, gintonin. Gintonin activates G protein-coupled LPA receptors with high affinity. Gintonin activated Ca2+-activated Clchannels in Xenopus oocytes through the activation of endogenous LPA receptor. In the present study, we investigated whether the activation of LPA receptor by gintonin is coupled to the regulation of N-methyl-d-aspartic acid (NMDA) receptor channel activity in Xenopus oocytes expressing rat NMDA receptors. The NMDA receptor-mediated ion current (I NMDA ) was measured using the two-electrode voltage-clamp technique. In oocytes injected with cRNAs encoding NMDA receptor subunits, gintonin enhanced I NMDA in a concentration-dependent manner. Gintonin-mediated I NMDA enhancement was blocked by Ki16425, an LPA1/3 receptor antagonist. Gintonin action was blocked by a PLC inhibitor, IP3 receptor antagonist, Ca2+ chelator, and a tyrosine kinase inhibitor. The site-directed mutation of Ser1308 of the NMDA receptor, which is phosphorylated by protein kinase C (PKC), to an Ala residue, or co-expression of receptor protein tyrosine phosphatase with the NMDA receptor attenuated gintonin action. Moreover, gintonin treatment elicited a transient elevation of [Ca2+]i in cultured hippocampal neurons and elevated longterm potentiation (LTP) in both concentration-dependent manners in rat hippocampal slices. Gintonin-mediated LTP induction was abolished by Ki16425. These results indicate that gintonin-mediated I NMDA potentiation and LTP induction in the hippocampus via the activation of LPA receptor might be responsible for ginseng-mediated improvement of memory-related brain functions.  相似文献   
938.
Male Utetheisa ornatrixhave a pair of eversible glandular brushes (coremata) which are displayed during precopulatory interactions with the female. Earlier studies have shown that a pheromone associated with the coremata, hydroxydanaidal (HD), is derived by the males from pyrrolizidine alkaloids (PAs) that they sequester as larvae from their foodplants (Crotalariaspp.) The PAs impart a distastefulness upon Utetheisathat protects both larvae and adults against predation. The receptor neurons specialized for detection of HD are housed in sensilla whose morphological features, as revealed by scanning electron microscopy, classify them as sensilla basiconica. The sensitivity and dynamic range of these receptor neurons were largely unaffected by whether the females were raised on an alkaloid-free diet or on a diet supplemented with Crotalariaseeds. Acetylation of the hydroxyl group of HD substantially reduced the activity of the molecule. None of the antennal sensilla examined contained receptor neurons sensitive to a PA (monocrotaline) or its N-oxide.  相似文献   
939.
Both neurotrophic factors and activity regulate synaptogenesis. At neuromuscular synapses, the neural factor agrin released from motor neuron terminals stimulates postsynaptic specialization by way of the muscle specific kinase MuSK. In addition, activity through acetylcholine receptors (AChRs) has been implicated in the stabilization of pre- and postsynaptic contacts on muscle at various stages of development. We show here that activation of AChRs with specific concentrations of nicotine is sufficient to induce AChR aggregation and that this induction requires the function of L-type calcium channels (L-CaChs). Furthermore, AChR function is required for agrin induced AChR aggregation in C2 muscle cells. The same concentrations of nicotine did not induce observable tyrosine phosphorylation on either MuSK or the AChR beta subunit, suggesting significant differences between the mechanisms of agrin and activity induced aggregation. The AChR/L-CaCh pathway provides a mechanism by which neuromuscular signal transmission can act in concert with the agrin-MuSK signaling cascade to regulate NMJ formation.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号