首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79905篇
  免费   5503篇
  国内免费   3999篇
  2023年   1114篇
  2022年   1825篇
  2021年   2519篇
  2020年   2326篇
  2019年   2691篇
  2018年   2685篇
  2017年   1939篇
  2016年   1936篇
  2015年   2481篇
  2014年   4634篇
  2013年   5882篇
  2012年   3526篇
  2011年   4716篇
  2010年   3645篇
  2009年   4054篇
  2008年   4172篇
  2007年   4305篇
  2006年   3822篇
  2005年   3469篇
  2004年   3110篇
  2003年   2661篇
  2002年   2345篇
  2001年   1616篇
  2000年   1353篇
  1999年   1416篇
  1998年   1286篇
  1997年   1131篇
  1996年   1077篇
  1995年   1007篇
  1994年   910篇
  1993年   844篇
  1992年   754篇
  1991年   688篇
  1990年   542篇
  1989年   495篇
  1988年   455篇
  1987年   433篇
  1986年   389篇
  1985年   560篇
  1984年   773篇
  1983年   578篇
  1982年   654篇
  1981年   461篇
  1980年   433篇
  1979年   368篇
  1978年   261篇
  1977年   222篇
  1976年   181篇
  1975年   166篇
  1974年   140篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid–liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.  相似文献   
22.
23.
Feral and laboratory flocks of rock doves (Columbalivia) show a pattern of grouped sequential exploitation when simultaneously presented with two dispersed, depleting patches of seed. This behavior contrasts with the ideal free distribution pattern shown when patches are small and concentrated. Grouped sequential exploitation consists of two phases: all pigeons first land together and feed at one patch, then leave one by one for the other patch. Departure times of individuals for the second patch are correlated with feeding rate at patch 1, which is in turn correlated with position in the dominance hierarchy. The decision to switch from patch 1 to patch 2 improves individual feeding rates in all cases, but is done slightly later than it should according to optimal foraging theory.  相似文献   
24.
A new brain protein is described which forms an insoluble complex with tubulin, with concomitant stoichiometric hydrolysis of GTP. The complex contains a maximum of one tubulin-binding protein (MW 52,500) per two tubulin dimers. The tubulin-binding protein (TBP) does not compete with colchicine, but in the presence of microtubule-associated proteins tubulin appeared less accessible to it. Proteins such as TBP might sequester tubulin and thereby function either to inhibit indiscriminate polymerization, or to promote ordered nucleation by maintaining high local concentrations.  相似文献   
25.
The oxidized B chain of insulin was used as a simple model for further consideration of limited proteolysis with low substrate:enzyme ratios. With low B chain:trypsin ratios, the ordinarily slower cleavage rate of the -Lys29-Ala30 bond essentially equaled the cleavage saturation rate of the -Arg22-Gly23 bond. This led to the disappearance of octapeptide which ordinarily forms most rapidly. Heptapeptide and alanine, formed mainly by cleavage of the octapeptide, decreased somewhat at high enzyme relative levels. Trypsin added to B chain formed a single chromatographic peak.  相似文献   
26.
We previously reported the identification of DP-1 isoforms (α and β), which are structurally C-terminus-deleted ones, and revealed the low-level expression of these isoforms. It is known that wild-type DP-1 is degraded by the ubiquitin-proteasome system, but few details are known about the domains concerned with the protein stability/instability for the proteolysis of these DP-1 isoforms. Here we identified the domains responsible for the stability/instability of DP-1. Especially, the DP-1 “Stabilon” domain was a C-terminal acidic motif and was quite important for DP-1 stability. Moreover, we propose that this DP-1 Stabilon may be useful for the stability of other nuclear proteins when fused to them.  相似文献   
27.
Cyanobacteria are one of the principal sources of volatile organic compounds (VOCs) which cause offensive taste and odor (T&O) in drinking and recreational water, fish, shellfish and other seafood. Although non-toxic to humans, these T&O compounds severely undermine public trust in these commodities, resulting in substantial costs in treatment, and lost revenue to drinking water, aquaculture, food and beverage and tourist/hospitality industries. Mitigation and control have been hindered by the complexity of the communities and processes which produce and modify T&O events, making it difficult to source-track the major producer(s) and the factors governing VOC production and fate. Over the past decade, however, advances in bioinformatics, enzymology, and applied detection technologies have greatly enhanced our understanding of the pathways, the enzymes and the genetic coding for some of the most problematic VOCs produced by cyanobacteria. This has led to the development of tools for rapid and sensitive detection and monitoring for the VOC production at source, and provided the basis for further diagnostics of endogenous and exogenous controls. This review provides an overview of current knowledge of the major cyanobacterial VOCs, the producers, the biochemistry and the genetics and highlight the current applications and further research needs in this area.  相似文献   
28.
Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27Kip1 was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCFSkp2 ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCFSkp2 pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.  相似文献   
29.
30.
Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号