首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3242篇
  免费   153篇
  国内免费   141篇
  2024年   10篇
  2023年   34篇
  2022年   50篇
  2021年   51篇
  2020年   63篇
  2019年   85篇
  2018年   90篇
  2017年   72篇
  2016年   67篇
  2015年   84篇
  2014年   131篇
  2013年   340篇
  2012年   75篇
  2011年   141篇
  2010年   86篇
  2009年   137篇
  2008年   136篇
  2007年   142篇
  2006年   130篇
  2005年   119篇
  2004年   118篇
  2003年   112篇
  2002年   103篇
  2001年   82篇
  2000年   71篇
  1999年   63篇
  1998年   87篇
  1997年   82篇
  1996年   50篇
  1995年   73篇
  1994年   44篇
  1993年   60篇
  1992年   57篇
  1991年   51篇
  1990年   52篇
  1989年   50篇
  1988年   42篇
  1987年   36篇
  1986年   29篇
  1985年   33篇
  1984年   40篇
  1983年   25篇
  1982年   28篇
  1981年   18篇
  1980年   18篇
  1979年   22篇
  1978年   18篇
  1977年   8篇
  1975年   4篇
  1973年   7篇
排序方式: 共有3536条查询结果,搜索用时 421 毫秒
81.
R. Marx  K. Brinkmann 《Planta》1979,144(4):359-365
1. Respiration rates of broad-bean (Vicia faba) mitochondria were studied as a function of temperature. Arrhenius plots of all membrane-bound enzymes, as obtained with saturating substrate concentrations, revealed a break in the lower temperature range. That break was considered to indicate a phase transition of membrane phospholipids, characteristic for chilling-sensitive plants. A second discontinuity at 30°C occurred only with activities linked to energy conservation. — 2. The activation energies for the oxidation of NAD+-linked substrates differ between states 3 and 4. State 3 respiration of NAD+-linked substrates is the result a superimposition of two branches of electron transport, which can be separated by different sensibilities to rotenone. A characteristic temperature dependency of the respiratory control, as well as a shift of the low temperature break in the Arrhenius plot toward a higher temperature after state 4 to state 3 transition, are calculated to be caused by the superimposition of the two branches. — 3. The temperature dependency of the oxidation of extra-mitochondrial NADH and of succinate differs remarkably from that of the oxidation of matrix-NADH. It has been concluded that the rotenone-resistant oxidation of matrix-NADH and the oxidation of external NADH are mediated via different pathways with individual regulation sites.Abbreviations BSA bovine serum albumin - CCCP carbonylcyanide-m-chlorophenylhydrazone - TPP thiaminepyrophosphate  相似文献   
82.
A new phototrophic bacterium was isolated from Jordanian and Kenyan alkaline salt lakes. Cells are rod shaped, 1.5 m wide and 2–4 m long, and motile by polar flagella. They divide by binary fission, and possess photosynthetic membranes as lamellar stacks similar to those in the other species of the genus Ectothiorhodospira and the brown colored Rhodospirillum species. The presence of bacteriochlorophyll a and carotenoids of the normal spirilloxanthin series is indicated by the absorption spectra of living cells. Under certain growth conditions the cells form gas vacuoles, may become immotile and float to the top of the culture medium. Sulfide and thiosulfate are used as photosynthetic electron donors. During the oxidation of sulfide to sulfate, elemental sulfur is formed, which is accumulated outside the cells. The organisms are strictly anaerobic, do not require vitamins, are moderately halophilic and need alkaline pH-values for growth. The new species Ectothiorhodospira vacuolata is proposed.  相似文献   
83.
Hydrogen-oxidizing acetogenic bacteria in pure culture are presently represented by the two mesophilic species, Acetobacterium woodii and Clostridium aceticum. From Lake Kivu we have isolated a Gram negative, chemolithotrophic, thermophilic anaerobe (LKT-1) that oxidizes hydrogen and reduces carbon dioxide to acetic acid. It is a non-motile, non-sporeforming rod, about 0.7m in width and 2–7.5m in length, often occuring in pairs or chains. The cell wall has a banded appearance; the surface layer contains a regular array of particles with six-fold rotational symmetry. No outer membrane is present. The temperature optimum for growth is 66°C, and the pH optimum is 6.4. Organic growth substrates include glucose, mannose, fructose, pyruvate, and formate; acetate is the principal product. The doubling time for growth on hydrogen and carbon dioxide is about 2h. Vitamins are neither required nor stimulatory. Yeast extract and Trypticase enhance the final yield but do not affect the growth rate. Cysteine or sulfide are required and cannot be replaced by thioglycolate or dithiothreitol. LKT-1 was mass cultured on hydrogen and carbon dioxide in a 24.1 fermentor with a yield of 34g (wet weight) of cells. The DNA base composition as determined by buoyant density is 38 mol % guanine plus cytosine. LKT-1 appears only distantly related to physiologically similar bacteria. A new genus Acetogenium is proposed, and the species is Acetogenium kivui.  相似文献   
84.
The reputedly obligately organotrophic Thiobacillus ferrooxidans KG-4 cultured on glucose contained a small proportion of cells which grew autotrophically on ferrous-iron.  相似文献   
85.
Sulphite oxidation by mitochondria prepared from green pea epicotyls had a higher Km than did the sulphite oxidation of mitochondria prepared from etiolated pea epicotyls. Mitochondrial sulphite oxidation from green and etiolated tissues was inhibited by cyanide but not by azide, rotenone, antimycin A or oligomycin. Mitochondria from green and etiolated tissues were able to oxidize glyoxal-bisulphite, but not as effectively as sulphite.  相似文献   
86.
Abstract A mass spectrometer with membrane inlet was used to measure methane and oxygen utilization rates at various methane concentrations in Methylosinus trichosporium and a locally isolated strain of a methane-oxidizing coccus (OU-4-1). The apparent K m for methane was found to be 2 μM for M. trichosporium and 0.8 μM for strain OU-4-1. These K m-values are 10–30 times lower than most previously reported values. The ratio of oxygen to methane utilization rates was 1.7 for M. trichosporium and 1.5 for strain OU-4-1 corresponding to a growth yield of 0.38 and 0.63 g dry weight/g methane, respectively.  相似文献   
87.
F1-ATPase was isolated from yeast S.cerevisiae. The constituent subunits 1 and 2 were purified by gel permeation chromatography, and their amino acid compositions determined. Both subunits have a similar composition except for 12 cystine, methionine, leucine, histidine, and tryptophan. When F1 is treated for three hours with 5′-p-[3H]fluorosulfonylbenzoyl adenosine in dimethylsulfoxide, 90% of the activity is lost. Disc gel electrophoresis of the modified complex showed that over 90% of the label was associated with subunit 2. A labelled peptide from a S.aureus digest of subunit 2 was isolated and sequenced. It had the following amino acid sequence: His-Try1-Asp-Val-Ala-Ser-Lys-Val-Gln-Glu, whereby Tyr1 is the modified amino acid residue. This sequence shows homology to other sequences obtained from maize, beef heart, and E.coli F1-ATPases.  相似文献   
88.
A novel epinephrine oxidation system in homogenates of the gorgonian Pseudoplexaura porosa was discovered. The enzymatic reaction required an unsaturated fatty acid and molecular oxygen or hydrogen peroxide. Diphenylisobenzofuran was also oxidized by Ps. porosa homogenates in the presence of an unsaturated fatty acid. Hydroxyl radical and superoxide anion did not appear to be involved in either of these oxidative reactions. The production of lipid hydroperoxides was not necessary for epinephrine oxidation and, with the exception of arachidonic acid, lipid hydroperoxide production did not occur. Evidence is presented for the involvement of singlet oxygen or a similar activated oxygen intermediate in the reactions, and a possible mechanism was proposed. The use of arachidonate-dependent epinephrine oxidation as a measure of prostaglandin synthetase activity is criticized.  相似文献   
89.
The stoichiometry and kinetics of the spontaneous, chemical reaction between pyrite and ferric iron was studied at 30, 45, and 70 degrees C in shake flasks at pH 1.5 by monitoring the ferrous iron, total iron, elemental sulfur, and sulfate concentration profiles in time. It was found that the sulfur moiety of pyrite was oxidized completely to sulfate. Elemental sulfur was not produced in detectable amounts. The iron moiety of pyrite was released as ferrous iron. All observed initial reaction rates could be fitted into an empirical equation. This equation includes the concentrations of ferric iron and pyrite, and a constant which is dependent on the temperature and the nature of the main anion present. It was observed that ferrous iron formed during the reaction slowed down the oxidation of pyrite by ferric iron. The extent of this effect decreased with increasing temperature. With the aid of the empirical equation, the contribution of the chemical oxidation of pyrite by ferric iron to the overall oxidation in a hypothetical plug-flow reactor, in which biologically mediated oxdidation of pyrite and ferrous iron by oxygen also takes place, can be assessed. At 30, 45, and 70 degrees C, respectively, 2, 8-17, and 43% of the pyrite was oxidized chemically by ferric iron. Therefore, it is expected that only in reactors operating at high temperatures with extremely thermophilic bacteria, will chemical oxidation cause a significant deviation from the apparent first order overall kinetics of biological pyrite oxidation.  相似文献   
90.
Summary A streptomycete gene coding for extracellular cholesterol oxidase (choA) was subcloned and expressed inEscherichia coli. The pUCO series recombinants were obtained by inserting thechoA gene into the uniqueKpnI site of pUC19 vector. Expression was observed with pUCO192A and pUCO193 constructs in which the cloned gene(s) were aligned with the upstreamlacZ promoter. Isopropyl -d-thioglucopyranoside (IPTG) enhanced this expression up to 2.5-fold. Specific Cho activity in the cell extracts of the stable pUCO193 transformant were 0.004 U and 0.007 U per mg protein without and with IPTG induction, respectively. Cho activity was detected in the spent medium of this culture, suggesting possible secretion of the enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号