首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   12篇
  2023年   2篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   4篇
  2017年   5篇
  2016年   8篇
  2015年   1篇
  2014年   19篇
  2013年   9篇
  2012年   13篇
  2011年   14篇
  2010年   12篇
  2009年   8篇
  2008年   7篇
  2007年   13篇
  2006年   15篇
  2005年   9篇
  2004年   16篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   12篇
  1984年   9篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有274条查询结果,搜索用时 15 毫秒
21.
Wu W  Yu LC 《Regulatory peptides》2004,120(1-3):119-125
The present study was performed to explore the role of oxytocin (OT) in spatial learning and memory in the nucleus basalis of Meynert (NBM) of rats. The latency, distance and swimming path to find the platform were tested by Morris water maze and recorded by a video camera connected to a computer. Intra-NBM injections of 2 or 10 nmol of OT, but not 0.2 nmol of OT, induced significant increase on the latency of spatial learning. Rats receiving intra-NBM administrations of 2 or 10 nmol of OT showed a more random search pattern. There were no significant changes in the swimming speed in Morris water maze test after the injection of OT. Furthermore, the impaired effect of OT on the latency of spatial learning was blocked by intra-NBM injection of the selective OT antagonist Atosiban, indicating that the effect of OT was mediated by OT receptor in the NBM of rats. Moreover, there were no influences of OT or Atosiban on the retention performance in rats. The results suggest that OT plays an inhibitory role in spatial learning in the NBM; the effect is mediated by OT receptor.  相似文献   
22.
Gh protein is an heterodimer made up of two subunits alpha and beta. Different from the traditional monomeric and heterotrimeric G proteins, Ghalpha subunit exhibits both GTPase and transglutaminase activities whereas Ghbeta was identified as calreticulin. Activation of Gh by G protein-coupled receptors (GPCR) turns off transglutaminase activity and shifts Ghalpha to signal transducer. Thereafter, Ghalpha regulates downstream effectors. All these aspects are discussed in the present review, in order to shed new light on this atypical G protein.  相似文献   
23.
Caligioni CS  Franci CR 《Life sciences》2002,71(24):2821-2831
Hyperosmolality is a potent stimulus for the secretion of oxytocin. Oxytocinergic neurons are modulated by estrogen and oxytocin secretion in rats varies according to the phase of the estrous cycle, with higher activity during proestrus. We investigated the oxytocin secretion induced by an osmotic stimulus (0.5 M NaCl) in female rats. Plasma oxytocin and the oxytocin contents in the neurohypophysis and the paraventricular and supraoptic nuclei were determined during the morning (8-9 h) and afternoon (17-18 h) of the estrous cycle and after ovariectomy followed or not by hormone replacement. Plasma oxytocin peaked in control animals during proestrus. Oxytocin content decreased in the paraventricular and supraoptic nuclei during proestrus and estrus compared to diestrus and increased in the neurohypophysis during proestrus morning. No significant difference was observed in the oxytocin content of the neurohypophysis, nuclei or plasma between ovariectomized animals and ovariectomized animals treated with estrogen or estrogen plus progesterone. Therefore, any ovarian factor other than estrogen or progesterone seems to play a direct or indirect role in the increase in oxytocin secretion. The osmotic stimulus caused an increase in plasma oxytocin throughout the estrous cycle. A reduction in oxytocin content during diestrus and an increase during proestrus were observed in the paraventricular nuclei. In ovariectomized animals, the treatment with estrogen potentiated the response of oxytocin to the osmotic stimulus, with the response being even stronger in the case of estrogen plus progesterone. In conclusion, the ovarian steroids estrogen plus progesterone could modulate the osmoreceptor mechanisms related to oxytocin secretion.  相似文献   
24.
The neuropeptide oxytocin regulates a wide variety of social behaviors across diverse species. However, the types of behaviors that are influenced by this hormone are constrained by the species in question and the social organization that a particular species exhibits. Therefore, the present experiments investigated behaviors regulated by oxytocin in a eusocial mammalian species by using the naked mole-rat (Heterocephalus glaber). In Experiment 1, adult non-breeding mole-rats were given intraperitoneal injections of either oxytocin (1 mg/kg or 10 mg/kg) or saline on alternate days. Animals were then returned to their colony and behavior was recorded for minutes 15–30 post-injection. Both doses of oxytocin increased huddling behavior during this time period. In Experiment 2, animals received intraperitoneal injections of either oxytocin (1 mg/kg), an oxytocin-receptor antagonist (0.1 mg/kg), a cocktail of oxytocin and the antagonist, or saline across 4 testing days in a counterbalanced design. Animals were placed in either a 2-chamber arena with a familiar conspecific or in a small chamber with 1 week old pups from their home colony and behaviors were recorded for minutes 15–30 post-injection. Oxytocin increased investigation of, and time spent in close proximity to, a familiar conspecific; these effects were blocked by the oxytocin antagonist. No effects were seen on pup-directed behavior. These data suggest that oxytocin is capable of modulating affiliative-like behavior in this eusocial species.  相似文献   
25.
In response to a recent hypothesis that the neuropeptide oxytocin might be involved in human pathogen avoidance mechanisms, we report the results of a study in which we investigate the effect of intranasal oxytocin on two behaviors serving as proxies for pathogen detection. Participants received either oxytocin or a placebo and were asked to evaluate (1) the health of Caucasian male computer-generated pictures that varied in facial redness (an indicator of hemoglobin perfusion) and (2) a series of pictures depicting disgusting scenarios. Men, but not women, evaluated all faces, regardless of color, as less healthy when given oxytocin compared to a placebo. Women, on the other hand, expressed decreased disgust when given oxytocin compared to a placebo. These results suggest that intranasal oxytocin administration does not facilitate pathogen detection based on visual cues, but instead reveal clear sex differences in the perception of health and sickness cues.  相似文献   
26.
Normal labor is accompanied by sequential changes in blood concentrations of prostaglandin F2α (measured as 15-ketodihydro-PGF2α = PGFM), progesterone, estradiol, oxytocin, vasopressin, and of elevated cortisol levels. The aim of this study was to investigate hormone concentrations in dogs diagnosed with primary uterine inertia before and during treatment by cesarian section. The hypothesis was the dogs would have abnormally low plasma concentrations in one or several of the hormones involved in parturition. The study comprised seven bitches with total primary uterine inertia (dystocia group) treated with cesarian section and six healthy bitches (control group) subjected to planned cesarean section. Blood samples were taken before anesthesia, before surgery started, on delivery of the first puppy and on delivery of the last puppy. The progesterone:PGFM ratio in plasma was higher in the dystocia group than in the control group, but the serum estradiol concentration did not differ between groups. The plasma concentrations of oxytocin and vasopressin increased in both groups when the first puppies were delivered, but both hormones were more elevated in the control group than in the dystocia group on delivery of the last puppies. The plasma cortisol concentration increased to the same level in both groups. In conclusion, the ratio between progesterone and PGFM was higher and the oxytocin and vasopressin concentrations lower in the dystocia dogs than in the control dogs. The findings indicate that these hormones are involved in the pathophysiology of total primary uterine inertia in bitches.  相似文献   
27.
AIM: Oxytocin was previously shown to have anti-inflammatory effects in different inflammation models. The major objective of the present study was to evaluate the protective role of oxytocin (OT) in protecting the kidney against ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS: Male Wistar albino rats (250-300 g) were unilaterally nephrectomized, and subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. OT (1 mg/kg, ip) or vehicle was administered 15 min prior to ischemia and was repeated immediately before the reperfusion period. At the end of the reperfusion period, rats were decapitated and kidney samples were taken for histological examination or determination of malondialdehyde (MDA), an end product of lipid peroxidation; glutathione (GSH), a key antioxidant; and myeloperoxidase (MPO) activity, an index of tissue neutrophil infiltration. Creatinine and urea concentrations in blood were measured for the evaluation of renal function, while TNF-alpha and lactate dehydrogenase (LDH) levels were determined to evaluate generalized tissue damage. Formation of reactive oxygen species in renal tissue samples was monitored by chemiluminescence technique using luminol and lucigenin probes. RESULTS: The results revealed that I/R injury increased (p<0.01-0.001) serum urea, creatinine, TNF-alpha and LDH levels, as well as MDA, MPO and reactive oxygen radical levels in the renal tissue, while decreasing renal GSH content. However, alterations in these biochemical and histopathological indices due to I/R injury were attenuated by OT treatment (p<0.05-0.001). CONCLUSIONS: Since OT administration improved renal function and microscopic damage, along with the alleviation of oxidant tissue responses, it appears that oxytocin protects renal tissue against I/R-induced oxidative damage.  相似文献   
28.
Jamshidi AA  Girard D  Beaudry F  Goff AK 《Steroids》2007,72(13):843-850
Oxytocin receptor (OTR) expression is suppressed by progesterone (P4) during the luteal phase of the estrous cycle and then it increases at the time of luteolysis, but its regulation is still not completely understood. The objective of this work was to characterize P4 metabolism by endometrial cells in vitro and determine if metabolites were able to modify prostaglandin secretion in response to oxytocin (OT). Endometrial epithelial and stromal cells were incubated with 3H-P4 or 3H-pregnenolone (P5) for 6 or 24 h. Metabolites in the medium were separated by HPLC. The results showed that P4 and P5 were converted to two major polar metabolites and a less polar metabolite that was identified as 5alpha- or 5beta-pregnanedione by LC/MS. Progesterone metabolism was similar in both stromal and epithelial cells. To determine if 5alpha- or 5beta-pregnanedione were able to modify PGF(2)alpha synthesis, cells were cultured with P4, 5alpha- or 5beta-pregnanedione (100 ng ml(-1)) for 48 h and then each group of cells was incubated for a further 4-6 h with or without OT (200 ng ml(-1)). Results showed that only P4 caused significant (P<0.001) increase in basal, but not OT-stimulated, PGF(2)alpha synthesis. OT binding assays showed no significant effect of progesterone or its metabolites on OTR concentration. In conclusion, bovine endometrial cells are able to metabolize pregnenolone and progesterone but neither 5alpha- nor 5beta-pregnanedione altered prostaglandin synthesis or OTR number in endometrial epithelial cells. These data suggest that 5-pregnanediones do not play a role in the regulation OT-stimulated PGF(2)alpha secretion during the bovine estrous cycle.  相似文献   
29.
Similarities as well as differences across species in the control of sexual behavior are helping to fully understand the subtle relations between physiology and eco-ethological constraints and how the brain integrates such information. We will illustrate this with sexual behavior in domestic ruminants and especially ewes. Females of these species like humans, but unlike rodents, have a long luteal phase. A prolonged exposure to progesterone (Pg) before the preovulatory estradiol rise is necessary for estrous behavior to be displayed. Estradiol action and receptor localization is very similar to that observed in other species. But not too surprisingly, the role of Pg is rather different with a priming effect not observed in rodents. However, as in rodents, Pg also has an inhibitory effect, is necessary for the display of proceptivity and is responsible for the timing of the different periovulatory events. These steroids act on the central nervous system in similar areas across mammalian species to regulate estrous behavior. Steroid fluctuations during the estrous cycle cause changes in catecholaminergic activity in the hypothalamus. Interestingly, these neurotransmitters seem to have very similar effects in ewes and rats as illustrated by the norepinephrine rise after male-female interactions observed in both species. Similar comparisons can be made regarding the action of some neuropeptides, including oxytocin and GnRH, and more integrative processes like sexual differentiation and modulation of reproduction by social interactions. Data on sheep, goats and cows will be compared with those of rodents.  相似文献   
30.
Male rodents that are naturally paternal, like all females, must inhibit infanticide and activate direct parental behavior as they become parents. Males, however, alter their behavior in the absence of parturition, postpartum ovulation and lactation, and therefore do not experience the hormone dynamics associated with such conditions. Paternal males might nevertheless use the same hormones to activate pre-existing maternal behavior pathways in the brain. Positive and inverse associations between prolactin, sex steroids (estradiol, testosterone, progesterone), glucocorticoids, oxytocin and vasopressin and paternal behavior are reviewed. Across biparental rodents (Phodopus campbelli, Peromyscus californicus, Microtus ochrogaster, and Meriones unguiculatus), as well as non-human primates and men, hormone-behavior associations are broadly supported. However, experimental manipulations (largely restricted to P. campbelli) suggest that the co-variation of hormones and paternal behavior is not causal in paternal behavior. Perhaps the hormone-behavior associations shared by P. campbelli and other paternal males are important for other challenges at the same time as fatherhood (e.g., mating during the postpartum estrus). On the other hand, each paternal species might, instead, have unique neuroendocrine pathways to parental behavior. In the latter case, future comparisons might reveal extraordinary plasticity in how the brain forms social bonds and alters behavior in family groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号