首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62451篇
  免费   4460篇
  国内免费   3359篇
  70270篇
  2024年   77篇
  2023年   737篇
  2022年   1285篇
  2021年   1473篇
  2020年   1384篇
  2019年   1803篇
  2018年   1808篇
  2017年   1329篇
  2016年   1499篇
  2015年   2088篇
  2014年   3089篇
  2013年   4288篇
  2012年   2253篇
  2011年   3166篇
  2010年   2555篇
  2009年   3222篇
  2008年   3471篇
  2007年   3468篇
  2006年   3222篇
  2005年   3142篇
  2004年   2815篇
  2003年   2503篇
  2002年   2332篇
  2001年   1515篇
  2000年   1295篇
  1999年   1413篇
  1998年   1431篇
  1997年   1206篇
  1996年   964篇
  1995年   1091篇
  1994年   1014篇
  1993年   888篇
  1992年   804篇
  1991年   583篇
  1990年   490篇
  1989年   461篇
  1988年   467篇
  1987年   424篇
  1986年   357篇
  1985年   436篇
  1984年   575篇
  1983年   423篇
  1982年   425篇
  1981年   276篇
  1980年   221篇
  1979年   193篇
  1978年   104篇
  1977年   59篇
  1976年   51篇
  1975年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Oncoproteomics is the term used to describe the application of proteomic technologies in oncology and parallels the related field of oncogenomics. It is now contributing to the development of personalized management of cancer. Proteomic technologies are used for the identification of biomarkers in cancer, which will facilitate the integration of diagnosis and therapy of cancer. Molecular diagnostics, laser capture microdissection and protein biochips are among the technologies that are having an important impact on oncoproteomics. The discovery of protein patterns developed by the US Food and Drug Administration/National Cancer Institute Clinical Proteomics Program is capable of distinguishing cancer and disease-free states with high sensitivity and specificity and will also facilitate the development of personalized therapy of cancer. Examples of application are given for breast and prostate cancer and a selection of companies and their collaborations that are developing application of proteomics to personalized treatment of cancer are discussed. Continued refinement of techniques and methods to determine the abundance and status of proteins in vivo holds great promise for the future study of normal cells and the pathology of associated neoplasms. Personalized cancer therapy is expected to be in the clinic by the end of the first decade of the 21st century.  相似文献   
992.
Oncoproteomics is the application of proteomics technologies in oncology. Functional proteomics is a promising technique for the rational identification of biomarkers and novel therapeutic targets for cancers. Recent progress in proteomics has opened new avenues for tumor-associated biomarker discovery. With the advent of new and improved proteomics technologies, such as the development of quantitative proteomic methods, high-resolution, -speed and -sensitivity mass spectrometry and protein arrays, as well as advanced bioinformatics for data handling and interpretation, it is now possible to discover biomarkers that can reliably and accurately predict outcomes during cancer management and treatment. However, there are several difficulties in the study of proteins/peptides that are not inherent in the study of nucleic acids. New challenges arise in large-scale proteomic profiling when dealing with complex biological mixtures. Nevertheless, oncoproteomics offers great promise for unveiling the complex molecular events of tumorigenesis, as well as those that control clinically important tumor behaviors, such as metastasis, invasion and resistance to therapy. In this review, the development and advancement of oncoproteomics technologies for cancer research in recent years are expounded.  相似文献   
993.
Meningococcal disease is a global problem. Multivalent (A, C, Y, W135) conjugate vaccines have been developed and licensed; however, an effective vaccine against serogroup B has not yet become available. Outer membrane vesicle (OMV) vaccines have been used to disrupt serogroup B epidemics and outbreaks. Postgenomic technologies have been useful in aiding the discovery of new protein vaccine candidates. Moreover, proteomic technologies enable large-scale identification of membrane and surface-associated proteins, and provide suitable methods to characterize and standardize the antigen composition of OMV-based vaccines.  相似文献   
994.
News in Brief     
Protein microarrays are versatile tools for parallel, miniaturized screening of binding events involving large numbers of immobilized proteins in a time- and cost-effective manner. They are increasingly applied for high-throughput protein analyses in many research areas, such as protein interactions, expression profiling and target discovery. While conventionally made by the spotting of purified proteins, recent advances in technology have made it possible to produce protein microarrays through in situ cell-free synthesis directly from corresponding DNA arrays. This article reviews recent developments in the generation of protein microarrays and their applications in proteomics and diagnostics.  相似文献   
995.
Proteomics and the study of protein–protein interactions are becoming increasingly important in our effort to understand human diseases on a system-wide level. Thanks to the development and curation of protein-interaction databases, up-to-date information on these interaction networks is accessible and publicly available to the scientific community. As our knowledge of protein–protein interactions increases, it is important to give thought to the different ways that these resources can impact biomedical research. In this article, we highlight the importance of protein–protein interactions in human genetics and genetic epidemiology. Since protein–protein interactions demonstrate one of the strongest functional relationships between genes, combining genomic data with available proteomic data may provide us with a more in-depth understanding of common human diseases. In this review, we will discuss some of the fundamentals of protein interactions, the databases that are publicly available and how information from these databases can be used to facilitate genome-wide genetic studies.  相似文献   
996.
Protein misfolding has traditionally been linked to the pathogenesis of various neurodegenerative diseases. However, emerging evidence from various laboratories, including ours, suggests that protein misfolding may also play a fundamental role in some malignancies, particularly those caused by fusion oncoprotein generated from chromosomal translocation. Promyelocytic leukemia (PML) fused to the retinoic acid receptor (RAR) is a fusion oncoprotein linked to the transformation of acute promyelocytic leukemia (APL), and is not only a misfolded protein itself, but also promotes misfolding of nuclear receptor corepressor (N-CoR) protein, a corepressor essential for the growth-suppressive function of several tumor-suppressor proteins. PML–RAR promotes misfolding of N-CoR by inducing aberrant post-translational modification, which destabilizes its core and promotes instability. Misfolded N-CoR, thus, contributes to differentiation arrest and survival of APL cells through loss-of-function and aberrant gain-of-function properties. Therapeutic restoration of N-CoR conformation and function with conformation-modifying agents not only releases this differentiation arrest but also sensitizes APL cells to programmed cell death. These findings illustrate the potential of the misfolded N-CoR protein as a conformation-based drugable molecular target for APL, and highlights the promise of various conformation-modifying agents as novel therapeutics for APL. Protein conformational rearrangement, resulting from an inherited or acquired genetic alteration, could be a common pathological phenomenon contributing to transformation in different types of leukemias and solid tumors and, therefore, could serve as a common ground for designing a unifying diagnostic as well as therapeutic approach for a widely diverse disease such as cancer. To that end, APL could serve as a model for the development of a novel conformation-based therapeutic approach for other malignant diseases.  相似文献   
997.
The field of proteomics is rapidly turning towards targeted mass spectrometry (MS) methods to quantify putative markers or known proteins of biological interest. Historically, the enzyme-linked immunosorbent assay (ELISA) has been used for targeted protein analysis, but, unfortunately, it is limited by the excessive time required for antibody preparation, as well as concerns over selectivity. Despite the ability of proteomics to deliver increasingly quantitative measurements, owing to limited sensitivity, the leads generated are in the microgram per milliliter range. This stands in stark contrast to ELISA, which is capable of quantifying proteins at low picogram per milliliter levels. To bridge this gap, targeted liquid chromatography (LC) tandem MS (MS/MS) analysis of tryptic peptide surrogates using selected reaction monitoring detection has emerged as a viable option for rapid quantification of target proteins. The precision of this approach has been enhanced by the use of stable isotope-labeled peptide internal standards to compensate for variation in recovery and the influence of differential matrix effects. Unfortunately, the complexity of proteinaceous matrices, such as plasma, limits the usefulness of this approach to quantification in the mid-nanogram per milliliter range (medium-abundance proteins). This article reviews the current status of LC/MS/MS using selected reaction monitoring for protein quantification, and specifically considers the use of a single antibody to achieve superior enrichment of either the protein target or the released tryptic peptide. Examples of immunoaffinity-assisted LC/MS/MS are reviewed that demonstrate quantitative analysis of low-abundance proteins (subnanogram per milliliter range). A strategy based on this technology is proposed for the expedited evaluation of novel protein biomarkers, which relies on the synergy created from the complementary nature of MS and ELISA.  相似文献   
998.
Evaluation of: Wulfkuhle JD, Berg D, Wolff C et al. Molecular analysis of HER2 signaling in human breast cancer by functional protein pathway activation mapping. Clin. Cancer Res. 18(23), 6426–6435 (2012).

Exhaustive characterization and mapping of pivotal molecules and downstream effectors deregulated in breast cancer is of fundamental clinical value to define the most effective therapy. Wulfkuhle et al. applied reverse-phase protein microarray, a highly sensitive immunoassay able to perform quantitative and multiplexed analysis of total and/or modified cellular proteins, to assess protein levels and activation/phosphorylation status of the HER family (EGFR, HER2, HER3) and downstream signaling molecules in HER2+ and HER2- breast cancers. The research was performed using laser capture microdissected tumor epithelial cells from frozen samples and formalin-fixed paraffin embedded specimens, which were also analyzed by immunohistochemistry (IHC) and FISH. This study identified a subgroup of IHC/FISH/HER2- patients with HER2 activation/phosphorylation levels comparable with those obtained from IHC/FISH/HER2+ tumors. HER2 signaling activation was independent from total HER2 expression and involved HER3 and EGFR activation. These findings indicate that molecular characterization by reverse-phase protein microarray of HER2 and its partners/effectors in the signaling cascade enables the identification of a subgroup of IHC/FISH/HER2- patients showing HER2 signaling activation. These patients, currently excluded from targeted therapy administration, could potentially benefit from this and it could improve prognosis and survival.  相似文献   
999.
Abstract

The capacity to control quadruplex formation, especially in cancer cells, is captivating and entails a reasonable comprehension of the ligand-G-quadruplex binding. Herein, we report an iminopyrenyl-β-cyclodextrin conjugate interacting with duplex and G-quadrulex DNAs. In addition, the host: guest association of the established G-quadruplex binder, berberine, with the β-cyclodextrin derivative is studied employing 2-D ROESY. NMR, UV-visible, and fluorescence spectroscopic techniques are utilized to explore the β-cyclodextrin conjugate's interaction with the quadruplexes. The Binding constants are accounted for the association of the ligands to each of the DNAs viz., calf thymus DNA (duplex), kit22, telo24, and myc22 (quadruplexes). The modulation of the iminopyrenyl-β-cyclodextrin binding to the DNAs are observed when berberine is loaded in the host molecule. A vivid distinction between the interactions of the ligands with duplex and quadruplex structures is inferred. Berberine-loaded iminopyrenyl-β-cyclodextrin shows a higher affinity for binding to kit22.  相似文献   
1000.
The copper(II) complexes with ciprofloxacin (CFLH), levofloxacin (LFLH), norfloxacin (NFLH), and neutral bidentate ligands have been synthesized and characterized. The complexes have been evaluated for their antibacterial activity against selective species. Complexes have been also checked for their interacting behavior with DNA, and were found to have two different modes of interaction, classical and partial intercalation. Tested complexes were found to be better antioxidants with their IC50 values ranging from 0.51 to 0.97 μM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号