排序方式: 共有233条查询结果,搜索用时 15 毫秒
31.
Chih-Hua Tseng Chang-Sheng Lin Pin-Keng Shih Lo-Ti Tsao Jih-Pyang Wang Chih-Mei Cheng Cherng-Chyi Tzeng Yeh-Long Chen 《Bioorganic & medicinal chemistry》2009,17(18):6773-6779
Synthesis and anti-inflammatory effects of certain furo[3′,2′:3,4]naphtho[1,2-d]imidazole derivatives 12–18 were studied. These compounds were synthesized from naphtho[1,2-b]furan-4,5-dione (10) which in turn was prepared from the known 2-hydoxy-1,4-naphthoquinone (7) in a one pot reaction. Furo[3′,2′:3,4]naphtho[1,2-d]imidazole (12) was inactive (IC50 value of >30 μM) while its 5-phenyl derivative 13, with an IC50 value of 16.3 and 11.4 μM against lysozyme and β-glucuronidase release, respectively, was comparable to the positive trifluoperazine. The same potency was observed for 5-furan derivative 16 with an IC50 value of 19.5 and 11.3 μM against lysozyme and β-glucuronidase release, respectively. An electron-withdrawing NO2 substituted on 5-phenyl or 5-furanyl group led to the devoid of activity as in the cases of 14 and 17. Among them, compound 15 exhibited significant inhibitory effects, with an IC50 value of 7.4 and 5.0 μM against lysozyme and β-glucuronidase release, respectively.For the LPS-induced NO production, the phenyl derivatives 12–15 were inactive while the nitrofuran counterparts 17 and 18 suppress LPS-induced NO production significantly, with an IC50 value of 1.5 and 1.3 μM, respectively, which are more active than that of the positive 1400 W. Compounds 16–18 were capable of inhibiting LPS-induced iNOS protein expression at a dose-dependent manner in which compound 18, with an IC50 of 0.52 μM in the inhibition of iNOS expression, is approximately fivefold more potent than that of the positive 1400 W. In the CLP rat animal model, compound 18 was found to be more active than the positive hydrocortisone in the inhibition of the iNOS mRNA expression in rat lung tissue. The sepsis-induced PGE2 production in rat serum decreased 150% by the pretreatment of 18 in a dose of 10 mg/kg. 相似文献
32.
Margarita Tenopoulou Jie Chen Jean Bastin Michael J. Bennett Harry Ischiropoulos Paschalis-Thomas Doulias 《The Journal of biological chemistry》2015,290(16):10486-10494
Very long acyl-CoA dehydrogenase (VLCAD) deficiency is a genetic pediatric disorder presenting with a spectrum of phenotypes that remains for the most part untreatable. Here, we present a novel strategy for the correction of VLCAD deficiency by increasing mutant VLCAD enzymatic activity. Treatment of VLCAD-deficient fibroblasts, which express distinct mutant VLCAD protein and exhibit deficient fatty acid β-oxidation, with S-nitroso-N-acetylcysteine induced site-specific S-nitrosylation of VLCAD mutants at cysteine residue 237. Cysteine 237 S-nitrosylation was associated with an 8–17-fold increase in VLCAD-specific activity and concomitant correction of acylcarnitine profile and β-oxidation capacity, two hallmarks of the disorder. Overall, this study provides biochemical evidence for a potential therapeutic modality to correct β-oxidation deficiencies. 相似文献
33.
34.
Nina M. van Sorge Federico C. Beasley Ivan Gusarov David J. Gonzalez Maren von K?ckritz-Blickwede Sabina Anik Andrew W. Borkowski Pieter C. Dorrestein Evgeny Nudler Victor Nizet 《The Journal of biological chemistry》2013,288(9):6417-6426
Staphylococcus aureus infections present an enormous global health concern complicated by an alarming increase in antibiotic resistance. S. aureus is among the few bacterial species that express nitric-oxide synthase (bNOS) and thus can catalyze NO production from l-arginine. Here we generate an isogenic bNOS-deficient mutant in the epidemic community-acquired methicillin-resistant S. aureus (MRSA) USA300 clone to study its contribution to virulence and antibiotic susceptibility. Loss of bNOS increased MRSA susceptibility to reactive oxygen species and host cathelicidin antimicrobial peptides, which correlated with increased MRSA killing by human neutrophils and within neutrophil extracellular traps. bNOS also promoted resistance to the pharmaceutical antibiotics that act on the cell envelope such as vancomycin and daptomycin. Surprisingly, bNOS-deficient strains gained resistance to aminoglycosides, suggesting that the role of bNOS in antibiotic susceptibility is more complex than previously observed in Bacillus species. Finally, the MRSA bNOS mutant showed reduced virulence with decreased survival and smaller abscess generation in a mouse subcutaneous infection model. Together, these data indicate that bNOS contributes to MRSA innate immune and antibiotic resistance phenotypes. Future development of specific bNOS inhibitors could be an attractive option to simultaneously reduce MRSA pathology and enhance its susceptibility to commonly used antibiotics. 相似文献
35.
目的观察不同时辰电针对大鼠杏仁核一氧化氮合酶(NOS)表达的影响.方法采用还原型尼克酰胺腺嘌呤二核苷酸脱氢酶(NADPH-d)法,观察不同时辰电针大鼠一侧"足三里"穴对杏仁核NOS表达的影响.结果电针对大鼠杏仁皮质内侧核群、基底外侧核群NOS的表达有上调作用,并存在时辰差异(P<0.05);电针对大鼠杏仁中央核NOS表达无明显作用(P>0.05).结论电针对大鼠杏仁核NOS表达的影响有时辰差异. 相似文献
36.
Yoshimura K Miyamoto Y Yasuhara R Maruyama T Akiyama T Yamada A Takami M Suzawa T Tsunawaki S Tachikawa T Baba K Kamijo R 《The Journal of biological chemistry》2011,286(17):14744-14752
Interleukin-1β (IL-1β) induces cell death in chondrocytes in a nitric oxide (NO)- and reactive oxygen species (ROS)-dependent manner. In this study, increased production of lactate was observed in IL-1β-treated mouse chondrocytic ATDC5 cells prior to the onset of their death. IL-1β-induced cell death in ATDC5 cells was suppressed by introducing an siRNA for monocarboxylate transporter-1 (MCT-1), a lactate transporter distributed in plasma and mitochondrial inner membranes. Mct-1 knockdown also prevented IL-1β-induced expression of phagocyte-type NADPH oxidase (NOX-2), an enzyme specialized for production of ROS, whereas it did not have an effect on inducible NO synthase. Suppression of IL-1β-induced cell death by Nox-2 siRNA indicated that NOX-2 is involved in cell death. Phosphorylation and degradation of inhibitor of κBα (IκBα) from 5 to 20 min after the addition of IL-1β was not affected by Mct-1 siRNA. In addition, IκBα was slightly decreased after 12 h of incubation with IL-1β, and the decrease was prominent after 36 h, whereas activation of p65/RelA was observed from 12 to 48 h after exposure to IL-1β. These changes were not seen in Mct-1-silenced cells. Forced expression of IκBα super repressor as well as treatment with the IκB kinase inhibitor BAY 11-7082 suppressed NOX-2 expression. Furthermore, Mct-1 siRNA lowered the level of ROS generated after 15-h exposure to IL-1β, whereas a ROS scavenger, N-acetylcysteine, suppressed both late phase degradation of IκBα and Nox-2 expression. These results suggest that MCT-1 contributes to NOX-2 expression via late phase activation of NF-κB in a ROS-dependent manner in ATDC5 cells exposed to IL-1β. 相似文献
37.
Effects of simvastatin and L-arginine on vasodilation,nitric oxide metabolites and endogenous NOS inhibitors in hypercholesterolemic subjects 总被引:1,自引:0,他引:1
Pereira EC Bertolami MC Faludi AA Salem M Bersch D Abdalla DS 《Free radical research》2003,37(5):529-536
Hypercholesterolemia is linked to endothelial dysfunction and enhancement of the endogenous inhibitor of NO synthase. The statins have lipid-lowering and pleiotropic properties, which could exert protective effects on the endothelium in hypercholesterolemia. The association of l -arginine with simvastatin could promote a further improvement on endothelial function in this condition. Thus, we investigated whether simvastatin, with or without supplementation with l -arginine, could improve endothelium-dependent vasodilation. In this study, 25 hypercholesterolemic subjects were treated according to the following protocol: washout period of 1 month; simvastatin (20 mg/day) for 2 months; simvastatin (20 mg/day)+ l -arginine (7 g/day) for 2 months. From these patients, 10 were chosen at random for evaluation of vascular function by high resolution ultrassonography of the brachial artery. In subjects treated with simvastatin plus l -arginine, an increase of l -arginine levels (68%) and l -arginine/asymmetric dimethylarginine (ADMA) ratio (67%) were observed. Simvastatin reduced the plasma concentrations of NO metabolites nitrite+nitrate (NOx: 34%), S -nitrosothiols (RSNO: 42%), total cholesterol (25%), low density lipoprotein (LDL)-cholesterol (36%) and the LDL-cholesterol/high density lipoprotein (HDL)-cholesterol ratio (34%). Simvastatin, associated or not to l -arginine, did not affect ADMA levels and endothelium-dependent vasodilation. Our data showed that simvastatin reduced the plasma concentrations of NOx and RSNO without affecting either the levels of ADMA or endothelium-dependent vasodilation in hypercholesterolemia. 相似文献
38.
Nedospasov AA 《Journal of biochemical and molecular toxicology》2002,16(3):109-120
The widespread opinion that N(2)O(3) as a product of NO oxidation is the only nitros(yl)ating agent under aerobic conditions is based on experiments in homogeneous buffered water solutions. In vivo NO is oxidized in heterogeneous media and this opinion is not correct. The equilibrium in the system being dependent on temperature and DeltaG((sol)) for NO, NO(2), isomers of both N(2)O(3), and N(2)O(4). For polar solvents including water, DeltaG((sol)) for N(2)O(3) is high enough, and a stationary concentration of N(2)O(3) in the mixture with other oxides is sufficient to guarantee the hydrolysis of N(2)O(3) to nitrite. In heterogeneous media, the mixture contains solvates NO(2(sol)), N(2)O(3(sol)), and N(2)O(4(sol)) at stationary nonequilibrium concentrations. As far as DeltaG((sol)) is decreased in heterogeneous mixtures with low polar solvents and/or at increased temperatures, the equilibrium in such a system shifts to NO(2). Although NO(2) is a reactive free radical, it almost does not react with water. In contrast, the reaction with most functional protein groups efficiently proceeds by a radical type with the formation of nitrite and new radicals (X) further stabilized in various forms. Therefore, the ratio of the nitrosylated and nitrated products yields depends on actual concentrations of all NO(x). 相似文献
39.
Peter Lachmann Yafei Huang Joachim Reimann Ulrika Flock Pia ?delroth 《The Journal of biological chemistry》2010,285(33):25531-25537
Nitric -oxide reductase (NOR) from Paracoccus denitrificans catalyzes the reduction of nitric oxide (NO) to nitrous oxide (N2O) (2NO + 2H+ + 2e− →N2O + H2O) by a poorly understood mechanism. NOR contains two low spin hemes c and b, one high spin heme b3, and a non-heme iron FeB. Here, we have studied the reaction between fully reduced NOR and NO using the “flow-flash” technique. Fully (four-electron) reduced NOR is capable of two turnovers with NO. Initial binding of NO to reduced heme b3 occurs with a time constant of ∼1 μs at 1.5 mm NO, in agreement with earlier studies. This reaction is [NO]-dependent, ruling out an obligatory binding of NO to FeB before ligation to heme b3. Oxidation of hemes b and c occurs in a biphasic reaction with rate constants of 50 s−1 and 3 s−1 at 1.5 mm NO and pH 7.5. Interestingly, this oxidation is accelerated as [NO] is lowered; the rate constants are 120 s−1 and 12 s−1 at 75 μm NO. Protons are taken up from solution concomitantly with oxidation of the low spin hemes, leading to an acceleration at low pH. This effect is, however, counteracted by a larger degree of substrate inhibition at low pH. Our data thus show that substrate inhibition in NOR, previously observed during multiple turnovers, already occurs during a single oxidative cycle. Thus, NO must bind to its inhibitory site before electrons redistribute to the active site. The further implications of our data for the mechanism of NO reduction by NOR are discussed. 相似文献
40.
Young-Lai Cho Sung-Mo Hur Ji-Yoon Kim Ji-Hee Kim Dong-Keon Lee Jongeon Choe Moo-Ho Won Kwon-Soo Ha Dooil Jeoung Sanghwa Han Sungwoo Ryoo Hansoo Lee Jeong-Ki Min Young-Guen Kwon Dong-Hyun Kim Young-Myeong Kim 《The Journal of biological chemistry》2015,290(1):467-477
Ginsenoside Rg5 is a compound newly synthesized during the steaming process of ginseng; however, its biological activity has not been elucidated with regard to endothelial function. We found that Rg5 stimulated in vitro angiogenesis of human endothelial cells, consistent with increased neovascularization and blood perfusion in a mouse hind limb ischemia model. Rg5 also evoked vasorelaxation in aortic rings isolated from wild type and high cholesterol-fed ApoE−/− mice but not from endothelial nitric-oxide synthase (eNOS) knock-out mice. Angiogenic activity of Rg5 was highly associated with a specific increase in insulin-like growth factor-1 receptor (IGF-1R) phosphorylation and subsequent activation of multiple angiogenic signals, including ERK, FAK, Akt/eNOS/NO, and Gi-mediated phospholipase C/Ca2+/eNOS dimerization pathways. The vasodilative activity of Rg5 was mediated by the eNOS/NO/cGMP axis. IGF-1R knockdown suppressed Rg5-induced angiogenesis and vasorelaxation by inhibiting key angiogenic signaling and NO/cGMP pathways. In silico docking analysis showed that Rg5 bound with high affinity to IGF-1R at the same binding site of IGF. Rg5 blocked binding of IGF-1 to its receptor with an IC50 of ∼90 nmol/liter. However, Rg5 did not induce vascular inflammation and permeability. These data suggest that Rg5 plays a novel role as an IGF-1R agonist, promoting therapeutic angiogenesis and improving hypertension without adverse effects in the vasculature. 相似文献