首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5329篇
  免费   258篇
  国内免费   48篇
  5635篇
  2024年   19篇
  2023年   63篇
  2022年   99篇
  2021年   138篇
  2020年   138篇
  2019年   130篇
  2018年   121篇
  2017年   98篇
  2016年   110篇
  2015年   281篇
  2014年   385篇
  2013年   491篇
  2012年   218篇
  2011年   350篇
  2010年   232篇
  2009年   335篇
  2008年   335篇
  2007年   372篇
  2006年   296篇
  2005年   189篇
  2004年   209篇
  2003年   186篇
  2002年   154篇
  2001年   62篇
  2000年   72篇
  1999年   71篇
  1998年   74篇
  1997年   66篇
  1996年   42篇
  1995年   45篇
  1994年   39篇
  1993年   20篇
  1992年   23篇
  1991年   24篇
  1990年   13篇
  1989年   10篇
  1988年   13篇
  1987年   8篇
  1986年   13篇
  1985年   2篇
  1984年   16篇
  1983年   20篇
  1982年   14篇
  1981年   6篇
  1980年   11篇
  1979年   11篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1972年   1篇
排序方式: 共有5635条查询结果,搜索用时 15 毫秒
921.
Parkinson’s disease (PD) is one of the most common neurological diseases in elderly people. The mean age of onset is 55 years of age, and the risk for developing PD increases 5-fold by the age of 70. In PD, there is impairment in both motor and nonmotor (NMS) functions. The strategy of PD motor dysfunction treatment is simple and generally based on the enhancement of dopaminergic transmission by means of the L-dihydroxyphenylalanine (L-dopa) and dopamine (DA) agonists. L-dopa was discovered in the early -60''s of the last century by Hornykiewicz and used for the treatment of patients with PD. L-dopa treatment in PD is related to decreased levels of the neurotransmitter (DA) in striatum and ab-sence of DA transporters on the nerve terminals in the brain. L-dopa may also indirectly stimulate the receptors of the D1 and D2 families. Administration of L-dopa to PD patients, especially long-time therapy, may cause side effects in the form of increased toxicity and inflammatory response, as well as disturbances in biothiols metabolism. Therefore, in PD pa-tients treated with L-dopa, monitoring of oxidative stress markers (8-oxo-2’-deoxyguanosine, apoptotic proteins) and in-flammatory factors (high-sensitivity C-reactive protein, soluble intracellular adhesion molecule), as well as biothiol com-pounds (homocysteine, cysteine, glutathione) is recommended. Administration of vitamins B6, B12, and folates along with an effective therapy with antioxidants and/or anti-inflammatory drugs at an early stage of PD might contribute to improvement in the quality of the life of patients with PD and to slowing down or stopping the progression of the disease.  相似文献   
922.
923.
924.
In the present study, the effect of arjunolic acid on testicular damage induced by intraperitoneal injection of rats with 7 mg/kg cisplatin was studied. Cisplatin induced a significant reduction in testicular weights, plasma testosterone, and testicular reduced glutathione levels in addition to a significant elevation of testicular malondialdehyde levels and testicular gene expressions of inducible nitric oxide synthase (iNOS), tumor necrosis factor‐α (TNF‐α), and p38 mitogen‐activated protein kinase (MAPK) when compared with the control group (p < 0.05). Lower tubular diameters and depletion of germ cells and irregular small seminiferous tubules with Sertoli cells only were observed in the cisplatin group. Arjunolic acid administration significantly corrected the changes in both biochemical and histopathological parameters. Arjunolic acid plays a significant protective role against cisplatin‐induced testicular injury by attenuating oxidative stress parameters along with downregulation of iNOS, TNF‐α, and p38‐MAPK testicular expressions.  相似文献   
925.
Humans are systemically exposed to persistent organic pollutants, of which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has become a major environmental concern. Exposure to TCDD results in a wide variety of adverse health effects which is mediated by oxidative stress through CYP1A1 activation and arachidonic acid metabolites. Eicosapentaenoic acid (EPA) exhibits antioxidant property and competes with arachidonic acid in membrane phospholipids and produces anti-inflammatory EPA derivatives. Since both EPA and its derivatives have been reported to enhance the antioxidant mechanism, the present study aimed at studying whether EPA could offer protection against TCDD-induced oxidative stress and nephrotoxicity in Wistar rats. Estimation of kidney markers (serum urea and creatinine) and histopathological studies revealed that EPA treatment significantly reduced TCDD-induced renal damage. TCDD-induced oxidative damage was reflected in a significant increase in CYP1A1 activity and lipid peroxide levels with a concomitant decline in non-enzymic antioxidant (GSH) and various enzymic antioxidants such catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and glutathione peroxidase (GPx). In addition, TCDD-induced oxidative stress also resulted in decline in Na+-K+ and Mg2+ATPases activities with increase in Ca2+ ATPases activity. Oral treatment with EPA showed a significant cytoprotection against TCDD-induced renal oxidative stress by decreased CYP1A1 activity and enhanced antioxidant status. TCDD-induced alterations in ATPase enzyme activities were also prevented by EPA treatment. Our results show clear evidence that EPA ameliorates TCDD-induced oxidative stress and kidney damage; thus suggest the potential of EPA as an effective therapeutic agent against toxic effects mediated through redox imbalance.  相似文献   
926.
Intestinal inflammatory diseases are the result of multiple processes, including mucosal oxidative stress and perturbed homeostasis between commensal bacteria and mucosal immunity. Toll-like receptors (TLRs) recognize molecular-associated microorganisms' patterns and trigger innate immunity responses contributing to intestinal homeostasis and inflammatory responses. However, TLRs effects on redox balance in intestinal mucosa remain unknown. Therefore, the present study analyzes the effect of TLR2, TLR3, and TLR4 on both oxidative damage of lipids and proteins, and the activity of antioxidant enzymes in enterocyte-like Caco-2 cells. The results show that the activation of these TLRs increased lipid and protein oxidation levels; however, the effect on the antioxidant enzymes activity is different depending on the TLR activated. These results suggest that the activation of TLR2, TLR3, and TLR4 might affect intestinal inflammation by not only their inherent innate immunity responses, but also their pro-oxidative effects on intestinal epithelial cells.  相似文献   
927.
A series of signaling cascades are activated after angiotensin II binds to angiotensin II type I receptor (AT1R), a peptide that is an important mediator of oxidative stress. Hsp70 regulates a diverse set of signaling pathways through interactions with proteins. Here, we tested the hypothesis of angiotensin II AT1R inhibition effect on Hsp70 interaction with Nox4/p22phox complex and Hsp70 leading to actin cytoskeleton modulation in spontaneously hypertensive rats (SHR) vascular smooth muscle cells (VSMCs). SHR and Wistar–Kyotto rats (VSMCs from 8 to 10 weeks) were stimulated with angiotensin II (100 nmol/L) for 15 min (AII), treated with losartan (100 nmol/L) for 90 min (L), and with losartan for 90 min plus angiotensin in the last 15 min (L + AII). Whereas SHR VSMCs exposure to angiotensin II overexpressed AT1R and Nox4 nicotinamide–adenine dinucleotide phosphate (NADPH) oxidase and slightly downregulated caveolin-1 expression, losartan decreased AT1R protein levels and increased caveolin-1 and Hsp70 expression in SHR VSMC membranes. Immunoprecipitation and immunofluorescence confocal microscopy proved interaction and colocalization of membrane translocated Hsp70 and Nox4/p22phox. Increased levels of Hsp70 contrast with the decreased immunoprecipitation of Nox4/p22phox and RhoA in membranes from SHR VSMCs (L) vs SHR VSMCs (AII). Hsp72 depletion resulted in higher Nox4 expression and increased NADPH oxidase activity in VSMCs (L + AII) from SHR when contrasted with nontransfected VSMCs (L + AII). After Hsp72 knockdown in SHR VSMCs, losartan could not impair angiotensin II-enhanced stress fiber formation and focal adhesion assembly. In conclusion, our data showing a negative regulation of Hsp70 on Nox4/p22phox demonstrates a possible mechanism in explaining the antioxidative function joined to cytoskeletal integrity modulation within the effects of losartan in VSMCs from SHR.  相似文献   
928.
The regenerative potential of mesenchymal stem cells (MSCs) is impaired by cellular senescence, a multi factorial process that has various functions. However, pathways and molecules involved in senescence have not been fully identified. Lipocalin 2 (Lcn2) has been the subject of intensive research, due to its contribution to many physiological and pathophysiological conditions. The implication of Lcn2 has been reported in many conditions where senescence also occurs. In the present study, we evaluated the role of Lcn2 in the occurrence of senescence in human bone marrow-derived mesenchymal stem cells (hB-MSCs) under oxidative conditions. When hB-MSCs were genetically engineered to over-express Lcn2 (MSC-Lcn2) and exposed to H2O2, the proliferation rate of the cells increased. However, the number of colonies and the number of cells that made up each colony in both MSC-V and MSC-Lcn2 cells decreased compared to those cultivated under normal conditions. Our results revealed that over-expression of recombinant Lcn2 in hB-MSCs decreases senescence induced by H2O2 treatment. Senescent cells were observed in aged hB-MSCs; however, no alteration in the expression level of Lcn2 was detected compared to earlier passages. Finally, a higher amount of Lcn2 protein was detected in the plasma of the elderly than in young people. Our findings suggest that Lcn2 might restore the health and regeneration potential of MSCs by decreasing senescence.  相似文献   
929.
930.
《Process Biochemistry》2014,49(4):589-598
Microorganisms are essential for maintaining ecosystem balance, and understanding their response to toxic pollutants is important in assessing the potential environmental impacts of such releases. In this study, the response to the heavy metal cadmium and the potential defense or adaptive mechanisms of the widely used white-rot fungus, Phanerochaete chrysosporium, were investigated. The results indicated that cadmium causes plasma membrane damage, including rigidification of lipids, a decrease in H+-ATPase activity, and lipid peroxidation. The cellular death may be mediated by oxidative stress with mitochondria membrane potential (MMP) breakdown and reactive oxygen species (ROS) formation. Parts of the cells were able to survive by activating antioxidant defense systems (antioxidant agents and enzymes). Extracellular synthesis of cadmium crystal particles was observed after exposure to dissolved cadmium ion, which is probably another detoxification mechanism in which the dissolved metal is precipitated, thus reducing its bioavailability and toxicity. These physiological responses of P. chrysosporium to cadmium together with the defense mechanisms can provide useful information for the development of fungal-based technologies to reduce the toxic effects of cadmium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号