首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   1篇
  国内免费   6篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   6篇
  2008年   8篇
  2007年   6篇
  2006年   7篇
  2005年   6篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   7篇
  1997年   6篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1982年   3篇
  1981年   1篇
  1977年   1篇
排序方式: 共有142条查询结果,搜索用时 62 毫秒
11.
Aims There is much evidence that plant competition below ground is size symmetric, i.e. that competing plants share contested resources in proportion to their sizes. Several researchers have hypothesized that a patchy distribution of soil nutrients could result in size-asymmetric root competition. We tested this hypothesis.  相似文献   
12.
Solanum chacoense ovule receptor kinase 28 (ScORK28) was found among 30 receptor kinases from an ovule cDNA library enriched for weakly expressed mRNAs. This LRR-RLK displayed high level of tissue specificity at the RNA and protein levels and was predominantly expressed in female reproductive tissues. Protein expression analyses in planta revealed that ScORK28 was N-glycosylated and ScORK28::GFP fusion analyses showed that it was localized at the plasma membrane. Bacterial expression of ScORK28 catalytic domain followed by kinase activity assays revealed that ScORK28 is an active Mg2+-dependent protein kinase and that the juxtamembrane domain is necessary for kinase activity.  相似文献   
13.
Summary Brachiaria decumbens has sexual and apomictic reproduction. Apomixis is facultative and of the aposporic type. In early stages of ovule development, differences in the pattern of callose deposition between sexual and apomictic plants were observed which points to possible differences in carbohydrate metabolism. Therefore, a comparative study on carbohydrate metabolism between a sexual diploid ecotype and an apomictic tetraploidB. decumbens was made. A histochemical determination of two enzymes responsible for sucrose degradation, sucrose synthase and invertase, was performed for all stages of ovule development. In addition, the concentrations of sucrose, glucose, and fructose were measured for each stage of ovule development, both for sexual and apomictic plants. The enzymes were localised by immunohistochemistry with heterologous antibodies. A distinct difference between sexual and apomictic plants was observed in the localisation of sucrose synthase activity as well as in the amount of activity, especially in the early stages of ovular development. Invertase activity localisation was comparable between ovules of the sexual and apomictic plants, but its activity is clearly higher in ovules of sexual plants. The localisation of the enzymes coincided with the place of activity. For both sexual and apomictic plants the amount of sucrose in the ovaries increased with the stage of ovule development. Differences in the amount of sucrose between sexual and apomictic plants in ovaries with ovules in comparable stages of development were detected. A delay in the onset of carbohydrate metabolism during early stages of ovule development characterises the apomictic plant.Abbreviations MMC megaspore mother cell - MC meiocyte - MS megaspore - AI apospore initial - CO coenocyte - MES mature embryo sac - SuSy sucrose synthase - INV invertase - BMM buthylmethyl methacrylate - DTT dithiothreitol - DAPI 4,6-diamidino-2-phenylindole - PBS phosphate-buffered saline  相似文献   
14.
 In many plant species with multiovulate ovaries, a considerable reduction in the number of ovules takes place. However, the underlying physiological causes are not clear. In Prunus spp., although flowers present two ovules, usually only one seed is produced. We have followed the development and degeneration of the two ovules in apricot (Prunus armeniaca L.) and examined the extent to which carbohydrates within the ovule might be involved in determining the fate of the ovule. While the primary ovule grows in the days following anthesis, growth of the secondary ovule is arrested. Starch distribution along the different ovular tissues exhibits several changes that are different in the two ovules. Primary ovule growth is inversely related to starch content and this growth takes place independently of pollination since it occurs in the same way in pollinated and unpollinated flowers. In the secondary ovule, starch disappears simultaneously from all ovular structures and callose is layered at the chalazal end of the nucellus. The size of the secondary ovule does not change significantly from anthesis to degeneration, and callose starts to accumulate 5 days after anthesis. Likewise, this process occurs independently of pollination. These results are discussed in terms of the implications of the starch content of ovules in fertilization success and ovule fate. Received: 26 August 1997 / Revision accepted: 17 December 1997  相似文献   
15.
16.

Background

It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5''-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm. RidA proteins belong to the YjgF/YER057c/UK114 family (here renamed the Rid family). Most other members of this diverse and ubiquitous family lack defined functions.

Results

Phylogenetic analysis divided the Rid family into a widely distributed, apparently archetypal RidA subfamily and seven other subfamilies (Rid1 to Rid7) that are largely confined to bacteria and often co-occur in the same organism with RidA and each other. The Rid1 to Rid3 subfamilies, but not the Rid4 to Rid7 subfamilies, have a conserved arginine residue that, in RidA proteins, is essential for imine-hydrolyzing activity. Analysis of the chromosomal context of bacterial RidA genes revealed clustering with genes for threonine dehydratase and other pyridoxal 5''-phosphate-dependent enzymes, which fits with the known RidA imine hydrolase activity. Clustering was also evident between Rid family genes and genes specifying FAD-dependent amine oxidases or enzymes of carbamoyl phosphate metabolism. Biochemical assays showed that Salmonella enterica RidA and Rid2, but not Rid7, can hydrolyze imines generated by amino acid oxidase. Genetic tests indicated that carbamoyl phosphate overproduction is toxic to S. enterica cells lacking RidA, and metabolomic profiling of Rid knockout strains showed ten-fold accumulation of the carbamoyl phosphate-related metabolite dihydroorotate.

Conclusions

Like the archetypal RidA subfamily, the Rid2, and probably the Rid1 and Rid3 subfamilies, have imine-hydrolyzing activity and can pre-empt damage from imines formed by amine oxidases as well as by pyridoxal 5''-phosphate enzymes. The RidA subfamily has an additional damage pre-emption role in carbamoyl phosphate metabolism that has yet to be biochemically defined. Finally, the Rid4 to Rid7 subfamilies appear not to hydrolyze imines and thus remain mysterious.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1584-3) contains supplementary material, which is available to authorized users.  相似文献   
17.
Yamaki S  Satoh H  Nagato Y 《Planta》2005,222(3):408-417
The embryo position in a seed is stable in most plant species, indicating the existence of a strict regulatory mechanism that specifies the embryo position in the seed. To elucidate this mechanism, we analyzed the gypsy embryo (gym) mutant of rice, in which the position of the mature embryo in the seed is altered at a low frequency. Analyses of early embryogenesis and ovule development showed that the ectopic embryo was derived from an ill-positioned egg cell, which resulted from the incomplete curvature of the ovule. Although the development of both the inner and outer integuments was impaired, the ovule curvature was associated closely with the extent of inner integument growth. Therefore, inner integument development controls ovule curvature in rice. The expression patterns of OSH1 and OsMADS13 indicated that, in gym, a small number of indeterminate cells are maintained on the style side of the ovule and then in the integument primordium at a low frequency. The prolonged survival of these indeterminate cells disturbs normal integument development. The gym fon2 double mutant suggests that GYM and FON2 are involved redundantly in floral meristem determinacy. Possible functions of the GYM gene and the ovule developmental mechanism are discussed.  相似文献   
18.
19.
Summary The development ofGasteria verrucosa ovules and seeds seems to follow a pattern of growth in which the majority of carbohydrates is first used in the sporophytic tissue (nucellus, integuments, and arillus) around the gametophyte-derived cells. After fertilization the carbohydrates are used for further development of the arillus and seed coat. During the next stage carbohydrates are directed to develop the endosperm, followed by carbohydrate investment in the developing embryo and in storage products. This utilization pattern is deducted from a localization study on sucrose synthase and invertase. These two enzymes break down imported sucrose and are in that perspective used as markers for carbohydrate transport since diffusion is expected to be induced towards cells and tissues with high sucrose-hydrolyzing activities.  相似文献   
20.
The path of the pollen tube has been examined in pistachio (Pistacia vera), a chalazogamous species where the pollen tube penetrate the ovule via the chalaza. Special attention was paid to the way the pollen tube gains access to the ovule. A single anatropous ovule with a big funiculus occupies the entire ovary cavity. At anthesis, a physical gap exists between the ovule and the base of the style. However, upon pollen tube arrival a protuberance, the ponticulus, develops in the uppermost area of the funiculus between the style and ovule. This structure appears to facilitate access to the ovule by the pollen tube. The pollen tube penetrates the ovule via this ponticulus. Upon penetration, callose develops in the ponticulus cells surrounding the pollen tube. After pollen tube passage, the upper layer of the ponticulus lignifies and isolates the ovule from the style. This separation is further enlarged 2 weeks later when the ovary starts to develop without expansion of the ovule and a large gap develops separating the ovule from the style. Except for the induction of callose formation by the pollen tube in the funiculus, this process is independent of pollination and appears to be developmentally regulated since it occurs in the same way and at the same time in pollinated and unpollinated flowers. The ponticulus, although by a different mechanism, appears to be playing the role of an obturator regulating access of the pollen tube to the ovule. Furthermore, this access is restricted to a particular time during the development of the ovule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号