首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7498篇
  免费   1673篇
  国内免费   953篇
  2024年   80篇
  2023年   352篇
  2022年   379篇
  2021年   529篇
  2020年   482篇
  2019年   446篇
  2018年   364篇
  2017年   378篇
  2016年   327篇
  2015年   332篇
  2014年   463篇
  2013年   531篇
  2012年   376篇
  2011年   402篇
  2010年   312篇
  2009年   405篇
  2008年   378篇
  2007年   400篇
  2006年   343篇
  2005年   324篇
  2004年   271篇
  2003年   276篇
  2002年   209篇
  2001年   168篇
  2000年   150篇
  1999年   144篇
  1998年   117篇
  1997年   97篇
  1996年   102篇
  1995年   92篇
  1994年   85篇
  1993年   71篇
  1992年   74篇
  1991年   66篇
  1990年   46篇
  1989年   52篇
  1988年   40篇
  1987年   50篇
  1986年   32篇
  1985年   52篇
  1984年   42篇
  1983年   34篇
  1982年   48篇
  1981年   36篇
  1980年   28篇
  1979年   25篇
  1978年   29篇
  1977年   24篇
  1976年   19篇
  1975年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
281.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   
282.
Abstract

Two complementary methods are described that associate in vitro and in vivo steps to generate sequence diversity by segment directed saturated mutagenesis and family shuffling. A high-throughput DNA chip-based procedure for the characterization and potentially the equalization of combinatorial libraries is also presented. Using these approaches, two combinatorial libraries of cytochrome P450 variants derived from the CYP1A subfamily were constructed and their sequence diversity characterized. The results of functional screening using high-throughput tools for the characterization of membrane P450-catalyzed activities, suggest that the 204–214 sequence segment of human CYP1A1 is not critical for polycyclic aromatic hydrocarbon recognition, as was hypothesized from previous data. Moreover, mutations in this segment do not alter the discrimination between alkoxyresorufins, which, for all tested mutants, remained similar to that of wild-type CYP1A1. In contrast, the constructed CYP1A1–CYP1A2 mosaic structures, containing multiple crossovers, exhibit a wide range of substrate preference and regioselectivity. These mosaic structures also discriminate between closely related alkoxyresorufin substrates. These results open the way to global high-throughput analysis of structure–function relationships using combinatorial libraries of enzymes together with libraries of structurally related substrates.  相似文献   
283.
The lipotoxic effects of obesity are important contributing factors in cancer, diabetes, and cardiovascular disease (CVD), but the genetic mechanisms, by which lipotoxicity influences the initiation and progression of CVD are poorly understood. Hearts, of obese and diabetic individuals, exhibit several phenotypes in common, including ventricular remodeling, prolonged QT intervals, enhanced frequency of diastolic and/or systolic dysfunction, and decreased fractional shortening. High systemic lipid concentrations are thought to be the leading cause of lipid-related CVD in obese or diabetic individuals. However, an alternative possibility is that obesity leads to cardiac-specific steatosis, in which lipids and their metabolites accumulate within the myocardial cells themselves and thereby disrupt normal cardiovascular function. Drosophila has recently emerged as an excellent model to study the fundamental genetic mechanisms of metabolic control, as well as their relationship to heart function. Two recent studies of genetic and diet-induced cardiac lipotoxicity illustrate this. One study found that alterations in genes associated with membrane phospholipid metabolism may play a role in the abnormal lipid accumulation associated with cardiomyopathies. The second study showed that Drosophila fed a diet high in saturated fats, developed obesity, dysregulated insulin and glucose homeostasis, and severe cardiac dysfunction. Here, we review the current understanding of the mechanisms that contribute to the detrimental effects of dysregulated lipid metabolism on cardiovascular function. We also discuss how the Drosophila model could help elucidate the basic genetic mechanisms of lipotoxicity- and metabolic syndrome-related cardiomyopathies in mammals.  相似文献   
284.
285.
ABSTRACT

The Mediterranean climate with hot and dry summer periods, and low winter temperatures and episodic frosts in northern, altitudinal and continental districts, demands from evergreen broadleaved woody plants an adequate and flexible acclimation to the climatic constraints.

In this brief survey on some responses of Mediterranean sclerophylls to temperature stress, the following is presented and discussed: criteria for cold and heat limits of photosynthetic function; winter depression and summer photoinactivation of photosynthesis; peculiar patterns of tissue freezing of scleromorphous leaves and limits of frost resistance of various plant parts and ontogenetic stages; heat impairment of chloroplasts and thermotolerance of sclerophyllous species; survival capacity and recovery after damage. Risks of damage to plants in relation to stressful temperatures in Mediterranean regions are estimated. Cold stress and drought stress indices, according to Mitrakos (1980), have been applied to characterise different localities in Italy. Additionally, a heat stress index for the Mediterranean region is proposed. Future research topics are suggested.  相似文献   
286.
Abstract

A classical question in systems biology is to find a Boolean model which is able to predict the observed responses of a signaling network. It has been previously shown that such models can be tailored based on experimental data. While fitting a minimum-size network to the experimentally observed data is a natural assumption, it can potentially result in a network which is not so robust against the noises in the training dataset. Indeed, it is widely accepted now that biological systems are generally evolved to be very robust. Therefore, in the present work, we extended the classical formulation of Boolean network construction in order to put weight on the robustness of the created network. We show that our method results generally in more relevant networks. Consequently, considering robustness as a design principle of biological networks can result in more realistic models.  相似文献   
287.
Abstract

TGR5 is the G-protein–coupled bile acid-activated receptor, found in many human and animal tissues. Considering different endocrine and paracrine functions of bile acids, the current review focuses on the role of TGR5 as a novel pharmacological target in the metabolic syndrome and related disorders, such as diabetes, obesity, atherosclerosis, liver diseases and cancer. TGR5 ligands improve insulin sensitivity and glucose homeostasis through the secretion of incretins. The bile acid/TGR5/cAMP signaling pathway increases energy expenditure in brown adipose tissue and skeletal muscle. Activation of TGR5 in macrophages inhibits production of proinflammatory cytokines and attenuates the development of atherosclerosis. This receptor has been detected in many cell types of the liver where it has anti-inflammatory effects, thus reducing liver steatosis and damage. TGR5 also modulates hepatic microcirculation and fluid secretion in the biliary tree. In cell culture models TGR5 has been linked to signaling pathways involved in metabolism, cell survival, proliferation and apoptosis, which suggest a possible role of TGR5 in cancer development. Despite the fact that TGR5 ligands may represent novel drugs for prevention and treatment of different aspects of the metabolic syndrome, clinical studies are awaited with the perspective that they will complete TGR5 biology and identify efficient and safe TGR5 agonists.  相似文献   
288.
Assessing the spatial variability of ecosystem structure and functioning is an important step towards developing monitoring systems to detect changes in ecosystem attributes that could be linked to desertification processes in drylands. Methods based on ground-collected soil and plant indicators are being increasingly used for this aim, but they have limitations regarding the extent of the area that can be measured using them. Approaches based on remote sensing data can successfully assess large areas, but it is largely unknown how the different indices that can be derived from such data relate to ground-based indicators of ecosystem health. We tested whether we can predict ecosystem structure and functioning, as measured with a field methodology based on indicators of ecosystem functioning (the landscape function analysis, LFA), over a large area using spectral vegetation indices (VIs), and evaluated which VIs are the best predictors of these ecosystem attributes. For doing this, we assessed the relationship between vegetation attributes (cover and species richness), LFA indices (stability, infiltration and nutrient cycling) and nine VIs obtained from satellite images of the MODIS sensor in 194 sites located across the Patagonian steppe. We found that NDVI was the VI best predictor of ecosystem attributes. This VI showed a significant positive linear relationship with both vegetation basal cover (R2 = 0.39) and plant species richness (R2 = 0.31). NDVI was also significantly and linearly related to the infiltration and nutrient cycling indices (R2 = 0.36 and 0.49, respectively), but the relationship with the stability index was weak (R2 = 0.13). Our results indicate that VIs obtained from MODIS, and NDVI in particular, are a suitable tool for estimate the spatial variability of functional and structural ecosystem attributes in the Patagonian steppe at the regional scale.  相似文献   
289.
ABSTRACT

Introduction: Due to the relatively low mutation rate and high frequency of copy number variation, finding actionable genetic drivers of high-grade serous carcinoma (HGSC) is a challenging task. Furthermore, emerging studies show that genetic alterations are frequently poorly represented at the protein level adding a layer of complexity. With improvements in large-scale proteomic technologies, proteomics studies have the potential to provide robust analysis of the pathways driving high HGSC behavior.

Areas covered: This review summarizes recent large-scale proteomics findings across adequately sized ovarian cancer sample sets. Key words combined with ‘ovarian cancer’ including ‘proteomics’, ‘proteogenomic’, ‘reverse-phase protein array’, ‘mass spectrometry’, and ‘adaptive response’, were used to search PubMed.

Expert opinion: Proteomics analysis of HGSC as well as their adaptive responses to therapy can uncover new therapeutic liabilities, which can reduce the emergence of drug resistance and potentially improve patient outcomes. There is a pressing need to better understand how the genomic and epigenomic heterogeneity intrinsic to ovarian cancer is reflected at the protein level and how this information could be used to improve patient outcomes.  相似文献   
290.
Currently, neuroproteomic approaches aimed at the profiling of total brain areas generally mirror the expression of the most abundant proteins, but fail to uncover less abundant proteins. By contrast, the focus on typical brain subproteomes, (e.g., synaptic vesicles, synaptic terminal membranes or the postsynaptic density), may give a more specific insight into brain function. Subproteomes are accessible via several strategies, including subcellular fractionation or affinity-based pull-down approaches. Combined with mass spectrometric quantification approaches, subcellular proteomics is expected to reveal differences in the protein constitution of related cellular organelles. Focusing on novel functions and mechanistic models, we review recent data on the analysis of brain-derived organelles and subproteomes, including presynaptic termini, synaptic vesicles, neuronal plasma membranes, postsynaptic density and neuromelanin granules, which were identified as novel lysosome-related organelles within the human brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号