首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9489篇
  免费   1486篇
  国内免费   2447篇
  2024年   84篇
  2023年   345篇
  2022年   266篇
  2021年   258篇
  2020年   492篇
  2019年   527篇
  2018年   584篇
  2017年   557篇
  2016年   549篇
  2015年   526篇
  2014年   560篇
  2013年   712篇
  2012年   470篇
  2011年   586篇
  2010年   411篇
  2009年   562篇
  2008年   538篇
  2007年   557篇
  2006年   524篇
  2005年   434篇
  2004年   392篇
  2003年   365篇
  2002年   359篇
  2001年   317篇
  2000年   270篇
  1999年   242篇
  1998年   223篇
  1997年   186篇
  1996年   177篇
  1995年   156篇
  1994年   149篇
  1993年   119篇
  1992年   130篇
  1991年   78篇
  1990年   88篇
  1989年   74篇
  1988年   64篇
  1987年   48篇
  1986年   58篇
  1985年   60篇
  1984年   52篇
  1983年   26篇
  1982年   60篇
  1981年   47篇
  1980年   31篇
  1979年   38篇
  1978年   19篇
  1977年   9篇
  1976年   17篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
61.
Measurements of suspended matter, particulate organic carbon and dissolved organic carbon were made over a three year period at stations spanning 150 km of the tidal freshwater Hudson River. Suspended matter concentrations varied from year-to-year and were not related to freshwater discharge. The increase in suspended matter with depth in vertical profiles suggests that, during medium to low flow conditions, resuspension of bottom sediments was as important a source of sediment as loadings from tributaries. Particulate organic carbon showed significant variability among stations, and both autochthonous primary production and detrital organic matter are contributing to POC standing stocks. Dissolved organic carbon represented over half of the total organic carbon in the water column and showed little variation among stations.Examining downstream changes in transport showed that there was significant production of both suspended matter and POC within the study reach during the ice-free season. Tributary loadings within the study reach do not appear to be the cause of these increases in downstream transport. Dissolved organic carbon behaved conservatively in that there was no evidence for net production or net consumption within the river.The spatial/temporal patterns and analyses of transport suggest that suspended matter and POC, but not DOC, were controlled to a significant extent by processes occurring within the river and were not simply related to loadings from outside.  相似文献   
62.
Carbon isotope ratios (13C) for bubble CH4 in a submerged paddy soil were studied in Yokohama, Japan, throughout a growing period, and its variation was found. Bubble CH4 collected from other 33 paddy fields in Japan was also measured for its 13C and the results agreed with Yokohama. Furthermore, the variation occurred irrespective of the amount and the type of supplied organic substances to the fields (whole rice straw, rice stubble, or compost). The 13C value (average value of -55.9 ± 4.24) from these paddy fields was higher than those of the CH4 emitted from African and North American paddies. The higher value was little affected by their difference in the supplied organic substances. CH4 oxidation likely occurs for bubble CH4 in the shallow paddy fields. A rough estimate of the total CH4 production, using isotope mass balance, showed that 17 to 22% of organic carbon supplied to Japanese paddies transforms to CH4.  相似文献   
63.
Microbial growth on carbon monoxide   总被引:14,自引:0,他引:14  
The utilization of carbon monoxide as energy and/or carbon source by different physiological groups of bacteria is described and compared. Utilitarian CO oxidation which is coupled to the generation of energy for growth is achieved by aerobic and anaerobic eu- and archaebacteria. They belong to the physiological groups of aerobic carboxidotrophic, facultatively anaerobic phototrophic, and anaerobic acetogenic, methanogenic or sulfate-reducing bacteria. The key enzyme in CO oxidation is CO dehydrogenase which is a molybdo iron-sulfur flavoprotein in aerobic CO-oxidizing bacteria and a nickel-containing iron-sulfur protein in anaerobic ones. In carboxidotrophic and phototrophic bacteria, the CO-born CO2 is fixed by ribulose bisphosphate carboxylase in the reductive pentose phosphate cycle. In acetogenic, methanogenic, and probably in sulfate-reducing bacteria, CODH/acetyl-CoA synthase directly incorporates CO into acetyl-CoA.In plasmid-harbouring carboxidotrophic bacteria, CO dehydrogenase as well as enzymes involved in CO2 fixation or hydrogen utilization are plasmid-encoded. Structural genes encoding CO dehydrogenase were cloned from carboxidotrophic, acetogenic and methanogenic bacteria. Although they are clustered in each case, they are genetically distinct.Soil is a most important biological sink for CO in nature. While the physiological microbial groups capable of CO oxidation are well known, the type and nature of the microorganisms actually representing this sink are still enigmatic. We also tried to summarize the little information available on the nutritional and physicochemical requirements determining the sink strength. Because CO is highly toxic to respiring organisms even in low concentrations, the function of microbial activities in the global CO cycle is critical.  相似文献   
64.
ACladosporium species produced large amounts of cellulase enzyme components when grown in shake-culture with medium containing carboxymethylcellulose. There was significantly less activity when Avicel, filter paper or cotton were used as substrates. KNO3 was better than NH4Cl or urea for the production of cellulase. Tween 80 at 0.1% (w/v) increased the production of cellulase by 1.5 to 4.5-fold. All the cellulase components were optimally active in the assay at pH 5.0 and 60°C.  相似文献   
65.
Variation in the carbon content of two Asplanchna species   总被引:3,自引:3,他引:0  
The rotifers of the genus Asplanchna were sampled four times during the summer from eight lakes of different types. The mean individual carbon content in the population varied between 0.15–0.66 µg C ind.-1 (n = 21) for A. priodonta and 1.0–1.6 µg C ind.-1 (n = 3) for A. herricki. The carbon content and the size of A. priodonta varied considerably between the populations of both different lakes and dates.The carbon level of both Asplanchna species (sample mean 0.2–1% of wet weight) was considerably lower than is generally found for rotifers. Much of the variation of carbon level could be explained by an inverse relationship with wet weight. The high variation in the carbon content of individuals suggests that Asplanch population may adapt their mean body size to fit prevailing environmental conditions.  相似文献   
66.
The influence of invertebrates upon the decomposition ofPotamogeton pectinatus L. in a coastal Marina system was examined over 112 days using litter bags. Invertebrate inclusion bags (2 mm mesh, 5 mm holes) registered a dry mass loss of 1% d–1, while exclusion litter bags (80 µm mesh) produced a 0.4% mass loss d–1 (a 2.5 fold difference). Losses of ash and N from inclusion bags were greater than those from exclusion bags (p < 0.05). There was a three fold difference between the two treatments in the time taken for litter to breakdown to half the initial stock: T1/2 for inclusion bags = 43 d, exclusion bags = 130 d. In both treatments, minerals showed an expected rapid loss, due to leaching, with a subsequent slow increase relative to the dry material remaining. A total of nine invertebrate taxa was recorded from inclusion bags, with a peak biomass of 64 mg g–1 dry massPotamogeton bag–1 reached at 64 days after immersion. Grazing amphipods,Melita zeylanica Stebbing andAustrochiltonia subtenuis (Barnard), numerically dominated the litter bag fauna, whileM. zeylanica and nymphs of the zygopteran predatorIschnura senegalensis (Rambur) formed most of the biomass. Scanning Electron Microscopy indicated heavy grazing of micro-organisms by invertebrates, with major qualitative differences occurring 112 days after immersion. Invertebrates significantly accelerated the rate of litter breakdown through their feeding activities, assisting fragmentation and thus contributing to plant losses and also by increasing the surface area for microbial colonisation and attack.  相似文献   
67.
A method is described for the measurement of the carbon and nitrogen content of particulate material in natural waters. Particulate material is separated by filtration through GF/C filters. The dried filter is encapsulated in silver foil using a purpose made press. Analysis is carried out using high temperature combustion with thermal conductivity detection of emission gasses. Analytical performance characteristics obtained with both standards and natural materials are given.  相似文献   
68.
Respiration was measured in dauer stages of the insect-parasitic nematode Steinernema feltiae (= Neoaplectana carpocapsae) at 7, 17, and 27 C. Respiration, Q₁₀, and nematode viability were temperature dependent. Mean O₂ consumption for 5 × 10⁵ nematodes the first 24 hours was 0.27 ml at 7 C, 0.83 ml at 17 C, and 2.68 ml at 27 C. The Q₁₀ was 3.10 for 7-17 C and 3.24 for 17-27 C. Some nematodes died during 2, 14, and 21 days at 27, 17, and 7 C, respectively. The respiratory quotient was below 1 at all temperatures tested. A standard asymptotic model is expressed as oxygen consumed = 2.77 * {1 - exponent[-time * exponent(-B + C * temperature)]}; where 2.77 is the maximum response at 27 C. This model estimates nematode O₂ consumption and viability at storage temperatures between 7 and 27 C. The nematodes died when the O₂ concentration reached 0.5 ml/5 × 10⁵ nematodes. This model may be used to predict O₂ requirements of S. feltiae infective juveniles when stored as a waterless concentrate.  相似文献   
69.
70.
The photosynthetic and growth characteristics of Ceratophyllum demersum L. were investigated under laboratory conditions which simulated those encountered in the plants' normal environment. The carbon fixation rate of C. demersum measured with 14C at light and carbon saturation at pH 8.0 was 4.48 mg C (g ash-free dry weight)−1 h−1. It was lower at pH 6.5 than at pH 8.0. The light use efficiencies in quiescent plants and actively growing plants were 6.3 and 8.7 × 10−9 kg CO2 J−1, respectively, with corresponding maximum photosynthetic rates of 2.67 and 4.36 mg C (g ash-free dry weight)−1 h−1. Photorespiration in actively growing plants consumed 24% of the carbon fixed. Incubation with DCMU demonstrated that about one-third was refixed. The optimum temperature for carbon fixation was 25°C. The C3-photosynthetic pathway was the main operational route as indicated by the early photosynthetic products (largely C3-acids) and the absence of Krantz anatomy and the chlorophyll a:b ratio (2.7). The maximum relative growth rates ranged from 0.025 to 0.041 g ash-free dry weight (g ash-free dry weight)−1 day−1 in the field (Lake Vechten, 1 to 3 m depth classes).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号