首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   0篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2014年   5篇
  2013年   12篇
  2012年   4篇
  2011年   8篇
  2010年   53篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1981年   4篇
  1980年   1篇
  1978年   1篇
排序方式: 共有117条查询结果,搜索用时 0 毫秒
111.
Membrane fusion at eukaryotic organelles is initiated by Rab GTPases and tethering factors. Rabs in their GDP-bound form are kept soluble in the cytoplasm by the GDP dissociation inhibitor (GDI) chaperone. Guanine nucleotide exchange factors (GEFs) are found at organelles and are critical for Rab function. Here, we surveyed the overall role of GEFs in Rab localization. We show that GEFs, but none of the proposed GDI displacement factors, are essential for the correct membrane localization of yeast Rabs. In the absence of the GEF, Rabs lost their primary localization to the target organelle. Several Rabs, such as vacuolar Ypt7, were found at the endoplasmic reticulum and thus were still membrane-bound. Surprisingly, a Ypt7 mutant that undergoes facilitated nucleotide exchange localized to vacuoles independently of its GEF Mon1-Ccz1 and rescued vacuole morphology. In contrast, wild-type Ypt7 required its GEF for localization and to counteract the extraction by GDI. Our data agree with the emerging model that GEFs are critical for Rab localization but raise the possibility that additional factors can contribute to this process.  相似文献   
112.
Cellular organelles do not function as isolated or static units, but rather form dynamic contacts between one another that can be modulated according to cellular needs. The physical interfaces between organelles are important for Ca2+ and lipid homeostasis, and serve as platforms for the control of many essential functions including metabolism, signaling, organelle integrity and execution of the apoptotic program. Emerging evidence also highlights the importance of organelle communication in disorders such as Alzheimer's disease, pulmonary arterial hypertension, cancer, skeletal and cardiac muscle dysfunction. Here, we provide an overview of the current literature on organelle communication and the link to human pathologies.  相似文献   
113.
114.
We present evidence that venom from the Brazilian scorpion Tityus serrulatus and a purified fraction selectively cleave essential SNARE proteins within exocrine pancreatic tissue. Western blotting for vesicle-associated membrane protein type v-SNARE proteins (or synaptobrevins) reveals characteristic alterations to venom-treated excised pancreatic lobules in vitro. Immunocytochemistry by electron microscopy confirms both the SNARE identity as VAMP2 and the proteolysis of VAMP2 as a marked decrease in secondary antibody-conjugated colloidal gold particles that are predominantly associated with mature zymogen granules. Studies with recombinant SNARE proteins were used to determine the specific cleavage site in VAMP2 and the susceptibility of VAMP8 (endobrevin). The VAMP2 cleavage site is between the transmembrane anchor and the SNARE motif that assembles into the ternary SNARE complex. Inclusion of divalent chelating agents (EDTA) with fraction ν, an otherwise active purified component from venom, eliminates SNARE proteolysis, suggesting the active protein is a metalloprotease. The unique cleavages of VAMP2 and VAMP8 may be linked to pancreatitis that develops following scorpion envenomation as both of these v-SNARE proteins are associated with zymogen granule membranes in pancreatic acinar cells. We have isolated antarease, a metalloprotease from fraction ν that cleaves VAMP2, and report its amino acid sequence.  相似文献   
115.
Summary From early prophase stage until probaculae formation within the tetrad stage considerable cytoplasmic changes occur. The changes merely concern the ribosome population, the plasma matrix and, the endomembrane system formed by endoplasmic reticulum, dictyosomes and dictyosome-vesicles.The ultrastructure and morphology of mitochondria and plastids remain fairly unchanged, apart from the mobilization of starch during primexine formation.During meiotic prophase there is an increase in ribosome number, accompanied by the presence of nucleoloids in the cytoplasm. Simultaneously the electron density of the cytoplasm strongly increases, indicating a fair increase in protein content. Nucleoloids are also observed in the cytoplasm after primexine formation, accompanied by localized accumulation of ribosomes. Up to the individualization of the microspores the dictyosomes are in an inactive state. After that, they become very active, especially during primexine formation when numerous large dictyosome-vesicles are present.The endoplasmic reticulum (ER), initially in a plate-like configuration, disappears from the cytoplasm during primexine formation. Abundant, smooth and tubular ER is present when probaculum formation starts.  相似文献   
116.
Seedlings of alfalfa (Medicago sativa L.) were exposed to different concentrations of atmospheric ozone (20–30 (control), 40–60, 65–80, and 85–120 ppb) in four distinct areas in the Riyadh region, so as to decide how ozone affected some of the seedling cellular organelles. Results acquired utilizing transmission electron microscopy demonstrated certifiable impacts to exist on the cell organelles in the tissues of both the leaf mesophyll and stem cortex; contrasted with control plants, the chloroplasts seemed enlarged, irregular, different sizes, decomposed, and possibly dissolved, while the plastoglobules seemed deformed, more widely spaced, and enlarged, also the vacuoles contained no clear non-living components. Moreover, some parts of the cytoplasmic membranes were ruptured, with only a few vesicles created at all concentrations, particularly in plants exposed to concentrations of 65–80 and 85–120 ppb, while no effects were noted in these organelles in control plants or plants exposed to 40–60 ppb. High concentrations (85–120 ppb) led to enlarged, irregularly shaped nuclei and chromatin intensification; however, no clear effects of ozone were noted on the shapes of chloroplast starch grains or the mitochondria in leaf mesophyll and cortex cells in the stem. The high ozone concentrations can cause negative effects on the growth of alfalfa seedlings, leading to imbalances in their vital functions and acceleration of aging, thus potentially decreasing the total plant yield. The discoveries hence propose that alfalfa plants should not be planted near polluted areas, and that they can be utilized as bioindicators of air pollution by ozone.  相似文献   
117.
The dynamics and interactions of cellular organelles underlie many aspects of cellular functioning. Until recently, assessment of organelle dynamics has been primarily observational or required whole-cell perturbations to assess the implications of altered organelle motility and positioning. However, thanks to recently developed and optimized intervention strategies, we now have the ability to control organelles in their unperturbed state, altering organelle positioning, membrane trafficking pathways, as well as organelle interactions. This can be performed both globally and locally, giving fine control over the range, reversibility, and extent of organelle dynamics. Here, we describe how these tools are currently used for controlling organelles and give insight into the exciting future of this emerging field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号