首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4345篇
  免费   464篇
  国内免费   238篇
  5047篇
  2024年   16篇
  2023年   166篇
  2022年   116篇
  2021年   172篇
  2020年   200篇
  2019年   244篇
  2018年   207篇
  2017年   204篇
  2016年   165篇
  2015年   168篇
  2014年   207篇
  2013年   255篇
  2012年   165篇
  2011年   151篇
  2010年   138篇
  2009年   190篇
  2008年   198篇
  2007年   207篇
  2006年   179篇
  2005年   169篇
  2004年   166篇
  2003年   159篇
  2002年   143篇
  2001年   121篇
  2000年   124篇
  1999年   95篇
  1998年   57篇
  1997年   52篇
  1996年   36篇
  1995年   36篇
  1994年   41篇
  1993年   39篇
  1992年   39篇
  1991年   38篇
  1990年   27篇
  1989年   25篇
  1988年   38篇
  1987年   41篇
  1986年   21篇
  1985年   30篇
  1984年   19篇
  1983年   29篇
  1982年   24篇
  1981年   27篇
  1980年   22篇
  1979年   17篇
  1978年   14篇
  1977年   11篇
  1976年   12篇
  1971年   6篇
排序方式: 共有5047条查询结果,搜索用时 0 毫秒
41.
The generalized estimating equations (GEE) derived by Liang and Zeger to analyze longitudinal data have been used in a wide range of medical and biological applications. To make regression a useful and meaningful statistical tool, emphasis should be placed not only on inference or fitting, but also on diagnosing potential data problems. Most of the usual diagnostics for linear regression models have been generalized for GEE. However, global influence measures based on the volume of confidence ellipsoids are not available for GEE analysis. This article presents an extension of these measures that is valid for correlated‐measures regression analysis using GEEs. The proposed measures are illustrated by an analysis of epileptic seizure count data arising from a study of prograbide as an adjuvant therapy for partial seizures and some simulated data sets.  相似文献   
42.
Multivariate recurrent event data are usually encountered in many clinical and longitudinal studies in which each study subject may experience multiple recurrent events. For the analysis of such data, most existing approaches have been proposed under the assumption that the censoring times are noninformative, which may not be true especially when the observation of recurrent events is terminated by a failure event. In this article, we consider regression analysis of multivariate recurrent event data with both time‐dependent and time‐independent covariates where the censoring times and the recurrent event process are allowed to be correlated via a frailty. The proposed joint model is flexible where both the distributions of censoring and frailty variables are left unspecified. We propose a pairwise pseudolikelihood approach and an estimating equation‐based approach for estimating coefficients of time‐dependent and time‐independent covariates, respectively. The large sample properties of the proposed estimates are established, while the finite‐sample properties are demonstrated by simulation studies. The proposed methods are applied to the analysis of a set of bivariate recurrent event data from a study of platelet transfusion reactions.  相似文献   
43.
Infectious disease data from surveillance systems are typically available as multivariate times series of disease counts in specific administrative geographical regions. Such databases are useful resources to infer temporal and spatiotemporal transmission parameters to better understand and predict disease spread. However, seasonal variation in disease notification is a common feature of surveillance data and needs to be taken into account appropriately. In this paper, we extend a time series model for spatiotemporal surveillance counts to incorporate seasonal variation in three distinct components. A simulation study confirms that the different types of seasonality are identifiable and that a predictive approach suggested for model selection performs well. Application to surveillance data on influenza in Southern Germany reveals a better model fit and improved one‐step‐ahead predictions if all three components allow for seasonal variation.  相似文献   
44.
Helen Berman is the recipient of the Protein Society 2012 Carl Branden Award In addition to being one of the early pioneers in protein crystallography, Carl Brändén made significant contributions to science education with his elegant and beautifully illustrated book Introduction to Protein Structure (Brändén and Tooze, New York: Garland, 1991). It is truly an honor to receive this award in their names. This award and the 40th anniversary of the Protein Data Bank (PDB; Berman et al., Structure 2012;20:391–396) have given me an opportunity to reflect on the various components that have contributed to building a resource for protein science and to try to quantify the impact of having PDB data openly available.  相似文献   
45.
Summary .   We develop methods for competing risks analysis when individual event times are correlated within clusters. Clustering arises naturally in clinical genetic studies and other settings. We develop a nonparametric estimator of cumulative incidence, and obtain robust pointwise standard errors that account for within-cluster correlation. We modify the two-sample Gray and Pepe–Mori tests for correlated competing risks data, and propose a simple two-sample test of the difference in cumulative incidence at a landmark time. In simulation studies, our estimators are asymptotically unbiased, and the modified test statistics control the type I error. The power of the respective two-sample tests is differentially sensitive to the degree of correlation; the optimal test depends on the alternative hypothesis of interest and the within-cluster correlation. For purposes of illustration, we apply our methods to a family-based prospective cohort study of hereditary breast/ovarian cancer families. For women with BRCA1 mutations, we estimate the cumulative incidence of breast cancer in the presence of competing mortality from ovarian cancer, accounting for significant within-family correlation.  相似文献   
46.
As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) “Resolution Revolution” made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps. After describing the history of the PDB and the Worldwide Protein Data Bank (wwPDB) partnership, which jointly manages both the PDB and EMDB archives, this review examines the origins of the resolution revolution and analyzes its impact on structural biology viewed through the lens of PDB holdings. Six areas of focus exemplifying the impact of 3DEM across the biosciences are discussed in detail (icosahedral viruses, ribosomes, integral membrane proteins, SARS-CoV-2 spike proteins, cryogenic electron tomography, and integrative structure determination combining 3DEM with complementary biophysical measurement techniques), followed by a review of 3DEM structure validation by the wwPDB that underscores the importance of community engagement.  相似文献   
47.
Fleming TR  Lin DY 《Biometrics》2000,56(4):971-983
The field of survival analysis emerged in the 20th century and experienced tremendous growth during the latter half of the century. The developments in this field that have had the most profound impact on clinical trials are the Kaplan-Meier (1958, Journal of the American Statistical Association 53, 457-481) method for estimating the survival function, the log-rank statistic (Mantel, 1966, Cancer Chemotherapy Report 50, 163-170) for comparing two survival distributions, and the Cox (1972, Journal of the Royal Statistical Society, Series B 34, 187-220) proportional hazards model for quantifying the effects of covariates on the survival time. The counting-process martingale theory pioneered by Aalen (1975, Statistical inference for a family of counting processes, Ph.D. dissertation, University of California, Berkeley) provides a unified framework for studying the small- and large-sample properties of survival analysis statistics. Significant progress has been achieved and further developments are expected in many other areas, including the accelerated failure time model, multivariate failure time data, interval-censored data, dependent censoring, dynamic treatment regimes and causal inference, joint modeling of failure time and longitudinal data, and Baysian methods.  相似文献   
48.
Describing, understanding and predicting the spatial distribution of genetic diversity is a central issue in biological sciences. In river landscapes, it is generally predicted that neutral genetic diversity should increase downstream, but there have been few attempts to test and validate this assumption across taxonomic groups. Moreover, it is still unclear what are the evolutionary processes that may generate this apparent spatial pattern of diversity. Here, we quantitatively synthesized published results from diverse taxa living in river ecosystems, and we performed a meta‐analysis to show that a downstream increase in intraspecific genetic diversity (DIGD) actually constitutes a general spatial pattern of biodiversity that is repeatable across taxa. We further demonstrated that DIGD was stronger for strictly waterborne dispersing than for overland dispersing species. However, for a restricted data set focusing on fishes, there was no evidence that DIGD was related to particular species traits. We then searched for general processes underlying DIGD by simulating genetic data in dendritic‐like river systems. Simulations revealed that the three processes we considered (downstream‐biased dispersal, increase in habitat availability downstream and upstream‐directed colonization) might generate DIGD. Using random forest models, we identified from simulations a set of highly informative summary statistics allowing discriminating among the processes causing DIGD. Finally, combining these discriminant statistics and approximate Bayesian computations on a set of twelve empirical case studies, we hypothesized that DIGD were most likely due to the interaction of two of these three processes and that contrary to expectation, they were not solely caused by downstream‐biased dispersal.  相似文献   
49.
A method for the on-line calculation of conversion rates and yield coefficients under dynamic process conditions was developed. The method is based on cumulated mass balances using a moving average method. Elemental balances were used to test the measured cumulated quantities for gross errors and inappropriate stoichiometry definition followed by data reconciliation and estimation of non-measured conversion rates, using a bioprocess set-up including multiple on-line analysis techniques. The quantitative potential of the proposed method is demonstrated by executing transient experiments in aerobic cultures of Saccharomyces cerevisiae on glucose. Rates and yield coefficients could be consistently quantified in shift-up, shift-down, and accelerostat experiments. The method shows the capability to describe quantitatively transient changes in metabolism including uncoupling of catabolism and anabolism, also for the case when multiple components of metabolism are not measured. The validity of the experiment can be evaluated on-line. Additionally, the method detects with high sensitivity inappropriate stoichiometry definition, such as a change in state of metabolism. It was shown that concentration values can be misleading for the identification of the metabolic state. In contrast, the proposed method provides a clear picture of the metabolic state and new physiological regulations could be revealed. Hence, the novelty of the proposed method is the on-line availability of consistent stoichiometric coefficients allowing a significant speed up in strain characterization and bioprocess development using minimal knowledge of the metabolism. Additionally, it opens up the use of transient experiments for physiological studies.  相似文献   
50.
Mahé C  Chevret S 《Biometrics》1999,55(4):1078-1084
Multivariate failure time data are frequently encountered in longitudinal studies when subjects may experience several events or when there is a grouping of individuals into a cluster. To take into account the dependence of the failure times within the unit (the individual or the cluster) as well as censoring, two multivariate generalizations of the Cox proportional hazards model are commonly used. The marginal hazard model is used when the purpose is to estimate mean regression parameters, while the frailty model is retained when the purpose is to assess the degree of dependence within the unit. We propose a new approach based on the combination of the two aforementioned models to estimate both these quantities. This two-step estimation procedure is quicker and more simple to implement than the EM algorithm used in frailty models estimation. Simulation results are provided to illustrate robustness, consistency, and large-sample properties of estimators. Finally, this method is exemplified on a diabetic retinopathy study in order to assess the effect of photocoagulation in delaying the onset of blindness as well as the dependence between the two eyes blindness times of a patient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号