首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   0篇
  2013年   6篇
  2012年   8篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   5篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   11篇
  1983年   6篇
  1982年   10篇
  1981年   6篇
  1980年   2篇
排序方式: 共有117条查询结果,搜索用时 62 毫秒
31.
Endogenous opiates and behavior: 2001   总被引:6,自引:0,他引:6  
Bodnar RJ  Hadjimarkou MM 《Peptides》2002,23(12):2307-2365
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).  相似文献   
32.
Abstract: A μ-selective opiate receptor agonist, sufentanil, can either increase or decrease the stimulated formation of cyclic AMP (cAMP) in the myenteric plexus. The direction of the opioid modulation of this second messenger depends on the concentration of opioid used. Low doses of opioid enhance, whereas higher concentrations inhibit, the magnitude of cAMP that is formed in response to electrical stimulation. Opioids exert this dual regulation on only stimulated cAMP formation. Basal levels are not affected. Opioid facilitation and inhibition of stimulated cAMP formation are blocked by naloxone, indicating mediation by opiate receptors. Because all experiments were conducted in the presence of a phosphodiesterase inhibitor, it is highly unlikely that opioid regulation of stimulated cAMP formation is due to changes in the rate of its degradation. Positive and negative coupling of μ-opiate receptors to adenylyl cyclase is the most plausible explanation for the bimodal opioid effects on cAMP content. The marked parallel between the current observations and the previously reported bimodal opioid regulation of evoked enkephalin release is consistent with the hypothesis that adenylyl cyclase is one biochemical substrate for the bimodal opiate receptor-coupled regulatory mechanism governing the stimulated release of this opioid peptide.  相似文献   
33.
This paper is the sixteenth installment of our annual review of research concerning the opiate system. It is restricted to papers published during 1993 that concern the behavioral effects of the endogenous opiate peptides, and does not include papers dealing only with their analgesic properties. The specific topics this year include stress; tolerance and dependence; eating; drinking; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; development; immunological responses; and other behaviors.  相似文献   
34.
NG108-15 cells were exposed in culture to 1 microM [D-Ala2,D-Leu5]enkaphalin (DADLE) for 17 h. This treatment increased the maximum iloprost- and 5'-(N-ethylcarboxamido)adenosine-dependent activation of adenylate cyclase, as well as basal enzyme activity. In addition, there was an increase in the capacity of 5'-guanylylimidodiphosphate [Gpp(NH)p] to inhibit adenylate cyclase activity by direct interaction with the alpha-subunit of the Gi regulatory protein. A similar effect was observed if the cells were exposed to 10 microM carbachol. These treatments of NG108-15 cells did not alter the capacity of NaF to activate adenylate cyclase by direct interaction with Gs alpha. Exposure of NG108-15 cells to DADLE alone or DADLE plus carbachol had no effect on the capacity of pertussis toxin to ADP-ribosylate membrane proteins in these cells; neither was there any change in the activity of eukaryotic ADP-ribosyltransferase expressed in these cells. Under these conditions, the endogenous enzyme did not label any protein with a molecular mass similar to Gi alpha, 41 kDa. Treatment of the cells with DADLE or carbachol had no effect on the abundance of Gs alpha, Gi alpha, or G beta. The underlying mechanism for the changes in agonist-dependent stimulatory responses or Gpp(NH)p-dependent inhibition of adenylate cyclase remains obscure, but appears not to be mediated by eukaryotic ADP-ribosyltransferase activity or a change in the abundance of G proteins known to regulate adenylate cyclase.  相似文献   
35.
The interaction of metkephamid (Tyr-D-Ala-Gly-Phe-N(Me)Met-NH2) with 3H-dihydromorphine and 3H-D-Ala2-D-Leu5-enkephalin binding has been examined in rat brain homogenates. Displacements of both 3H-ligands by metkephamid indicate that metkephamid interacts competitively with greatest potency to the high affinity binding component for both ligands (mu1 site). Unlike most enkephalins and opiates, metkephamid binds equipotently to both morphine-selective (mu2) and enkephalin-selective (delta) binding sites. Metkephamid is differentiated from morphine by its better than 12-fold higher affinity for the delta receptor. Blockade of the high affinity (mu1) binding in vivo with high doses of naloxazone dramatically reduces metkephamid's analgesic potency.  相似文献   
36.
Buprenorphine: High-Affinity Binding to Dorsal Spinal Cord   总被引:1,自引:0,他引:1  
The binding of the mixed opiate agonist-antagonist [3H]buprenorphine was compared with [3H]naloxone and [3H]dihydromorphine binding in membranes prepared from rat whole brain and dorsal spinal cord. Scatchard analysis of binding to whole brain yielded KD values close to 1.0 nM for all three 3H-ligands studied, although [3H]buprenorphine labelled five times as many binding sites. [3H]Naloxone and [3H]dihydromorphine bound to dorsal spinal cord with approximately the same affinity as to whole brain, although both 3H-ligands labelled fewer sites in the spinal cord. In contrast, Scatchard analysis of [3H]buprenorphine binding to spinal cord yielded curvilinear Scatchard plots, suggesting the presence of a very high-affinity (KD = 0.12 nM) binding site in addition to the high-affinity site (KD = 1.0 nM) present in the brain. Studies on the displacement of [3H]buprenorphine by opiates and D-Ala2,Met5-enkephalinamide supported the presence of two binding sites for this ligand in the spinal cord.  相似文献   
37.
The μ-opioid receptor gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, as illustrated by the identification of an array of splice variants generated by both 5′ and 3′ alternative splicing. The current study reports the identification of another set of splice variants conserved across species that are generated through exon skipping or insertion that encodes proteins containing only a single transmembrane (TM) domain. Using a Tet-Off system, we demonstrated that the truncated single TM variants can dimerize with the full-length 7-TM μ-opioid receptor (MOR-1) in the endoplasmic reticulum, leading to increased expression of MOR-1 at the protein level by a chaperone-like function that minimizes endoplasmic reticulum-associated degradation. In vivo antisense studies suggested that the single TM variants play an important role in morphine analgesia, presumably through modulation of receptor expression levels. Our studies suggest the functional roles of truncated receptors in other G protein-coupled receptor families.  相似文献   
38.
It has been proposed, with some supporting evidence, that development of opiate tolerance and dependence requires protein synthesis. However, a quantitative, biologically based model within which to analyse and support the data has been lacking. Utilizing such a framework or model, we recently compared the time course of onset of opiate dependence in laboratory animals, with the mathematical time course of general changes in protein levels. Not only did the time course of onset of dependence parallel the time course of increasing levels of a protein, but also the half-life of the putative protein required by the model was very similar to those of many brain proteins. In this study, we have more extensively tested the model by producing and examining a much more detailed and surprisingly complex time course of the onset of dependence. Applying the protein synthesis time course model to the data suggested the presence of two distinct components of dependence, an early transient component and a later long-lasting component. These components appear to correspond to acute and chronic dependence, respectively. The protein synthesis hypothesis more readily applies to the chronic dependence portion. Because consideration of the model can generate components that correspond to accepted and well-known components of dependence, both the utility of the model as well as the hypothesis that opiate dependence at least partially requires protein synthesis are supported. It is also possible that individual components of the withdrawal syndrome have individual and unique rate limiting mechanisms. In any case, time course analysis may be helpful in revealing underlying mechanisms of change.  相似文献   
39.
This paper is the fifteenth installment of our annual review of research concerning the opiate system. It includes papers published during 1992 involving the behavioral, nonanalgesic, effects of the endogenous opiate peptides. The specific topics this year include stress; tolerance and dependence; eating; drinking; gastrointestinal and renal function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunological responses; and other behaviors.  相似文献   
40.
A modified filtration method for in vitro receptor binding was used to determine specific binding of [3H]naloxone to small regions of adult rat brain. Reliable determinations of ligand binding were quantified with about 50 micrograms of protein per assay tube. Large differences in [3H]naloxone binding were obtained between various brain nuclei, and these differences were consistent with prior determinations of opiate receptor densities in various rat brain nuclei using autoradiographic techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号