首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   10篇
  国内免费   5篇
  167篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   2篇
  2014年   5篇
  2013年   11篇
  2012年   2篇
  2011年   8篇
  2010年   3篇
  2009年   6篇
  2008年   6篇
  2007年   4篇
  2006年   7篇
  2005年   5篇
  2004年   6篇
  2003年   12篇
  2002年   10篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   6篇
  1996年   5篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
161.
Carbon dioxide exchange was measured, using the eddy covariance technique, during a one and a half year period in 1994 and 1995. The measurements took place over a former true raised bog, characterized by a shallow peat layer and a vegetation dominated by Molinia caerulea. The growing season extended from May until late October, with a maximum LAI in August of 1.7. The carbon balance shows a net release of 97 g C m–2 y–1 (265 kg C ha–1 y–1) from the peat bog ecosystem to the atmosphere. During June, July and August there is net consumption of CO2, while during the rest of the year there is net production of CO2. The average daytime assimilation rates ranged between – 0.2 and – 0.5 mg CO2 m–2 s–1 (– 45 and –11.3 μmol CO2 m–2 s–1), in a period where the LAI ranged between 1 and 1.7. A high vapour pressure deficit (> 15 hPa) corresponding with high temperatures was found to reduce the assimilation rate by on average 50%. Apart from these factors, LAI and the soil temperature codetermine the net exchange of CO2. The total nocturnal respiration during the growing season lies within the same order as the average daytime net assimilation rate. Temperature was found to be the main factor controlling soil respiration, with a Q10 of 4.8.  相似文献   
162.
Question: Can investigations of subfossil bog‐pine woodlands contribute to the understanding of mire development, especially the influence of climate fluctuations on the fen–bog transition? Location: Lowlands of northwest Germany. Methods: We investigated pine (Pinus sylvestris L.) tree remains (stumps and trunks) buried in peat deposits. Dendrochronology was used to date each sampled tree to calendar years and to reconstruct population dynamics of the pine woodlands. Ecological changes, especially changes in site hydrology during the pine woodland phases were inferred from peat stratigraphic analyses and investigations of stem and root morphology of the tree remains. Results: The subfossil pine woodlands occurred mostly during the transition from fen to raised bog conditions within the mire development. The population dynamics are strikingly wave‐like whereas woodland phases of 100 to 250 years duration are separated by much shorter (10–50 years) phases of high germination and dying‐off rates (GDO phases). Such GDO phases are often synchronous at different sites and are also linked to growth depressions of the independent regional oak master chronology (LSBOC), indicating a climate trigger. Conclusions: The development of raised bogs started about 7000 BC and had a main phase between 5100 and 3600 BC in northwest Germany. The subfossil bog‐pine woodlands document the transitional phase towards the onset of raised bog formation, as characterized by initial dry conditions that were followed by increasing wetness of the sites, whereas this development is at least partly the result of climate variations.  相似文献   
163.
The peat-forming process of the southern margin of the taiga zone in West Siberia depends on climatic fluctuations, which have an effect on the peat stratigraphy and chemical composition of peat. It is shown that the contemporary warming does not interrupt the bog formation, which is due to the lateral flooding by water came from adjoining peatlands and periodical waterlogging of floodplain depressions during the years of excessive water supply.  相似文献   
164.
Aboveground net primary production (NPP) and surface water chemistryvariables were monitored in a lacustrine sedge fen and a bog for four years.There were no significant differences in precipitation, mean growing seasonannual temperature, and number of growing degree days from 1991 to 1994. Themean annual water levels in the lacustrine sedge fen differed significantly,whereas they were similar in the bog during these four years. We measured 15surface water variables in the lacustrine sedge fen and the bog, and foundthat only two correlated significantly with water level fluctuations. In thelacustrine sedge fen, calcium correlated positively (r2= 0.56) and nitrate correlated negatively (r2 =0.20) with water levels. In the bog, potassium correlated positively(r2 = 0.88) and total dissolved phosphorus correlatednegatively (r2 = 0.62) with water levels. The remainingchemical variables showed no significant correlations with water levelfluctuations. Net primary production of the different vegetation strataappeared to respond to different environmental variables. In the lacustrinesedge fen, graminoid production was explained to a significant degree bywater levels (r2 = 0.53), whereas shrub production wasexplained to a significant degree by surface water chemistry variables, suchas nitrate (r2 = 0.74) and total phosphorus(r2 = 0.22). In the bog, temperature was the onlyvariable that explained moss production to a significant degree(r2 = 0.71), whereas ammonium explained graminoidproduction (r2 = 0.66) and soluble reactive phosphorusexplained shrub production to significant degrees (r2 =0.71). There are few direct data on the impact of climatic warming in borealwetlands, although paleoecological and 2×CO2 model datahave provided some indications of past and possibly future changes invegetation composition, respectively. Our results suggest that thelacustrine sedge fen may succeed to a bog dominated by Sphagnum spp. andPicea mariana, whereas the bog may succeed to an upland-type forestecosystem. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
165.
Relationships between the distribution and specific leaf area (SLA: leaf area per unit dry mass) of six heath (Ericaceae) species were investigated along an environmental gradient between peat bogs and conifer forest in British Columbia, Canada. I asked whether patterns in SLA could help to identify the processes shaping plant distributional patterns. Specifically, I assessed whether (i) species’ distributions across the environmental gradient are correlated with SLA (ii) relationships between plant distributional patterns and SLA are similar among bogs with different shrub species (iii) intraspecific patterns in SLA parallel interspecific relationships between distributions and SLA, and (iv) intraspecific patterns are environmentally determined. Results showed that distributional patterns were often correlated with SLA; species with lower SLA were more abundant towards the centre of bogs, while species with higher SLA were more abundant in forest. Intraspecific patterns in SLA paralleled distributional patterns across the gradient; individuals located towards the centre of bogs had lower SLA than those growing in forest. A transplantation experiment showed that plants typically altered their SLA according to local environmental conditions. However, one bog showed no relationship between species’ distributions and SLA. This bog lacked the two species with lowest SLA, which typically occurred at the centre of other bogs. In their absence, species with higher SLA that typically occurred in forest increased in abundance towards the centre of the bog, where they obtained lower values of SLA. Therefore, while distributional patterns were often closely associated with SLA, plasticity in SLA was associated with increased breadth of species’ distributions across the gradient. Overall results indicate SLA may serve as a useful proxy for a range of life history traits to help elucidate the processes structuring plant communities.  相似文献   
166.
167.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号