首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1482篇
  免费   235篇
  国内免费   161篇
  2024年   6篇
  2023年   50篇
  2022年   31篇
  2021年   50篇
  2020年   83篇
  2019年   97篇
  2018年   86篇
  2017年   71篇
  2016年   73篇
  2015年   70篇
  2014年   86篇
  2013年   99篇
  2012年   81篇
  2011年   57篇
  2010年   85篇
  2009年   93篇
  2008年   85篇
  2007年   71篇
  2006年   85篇
  2005年   91篇
  2004年   44篇
  2003年   58篇
  2002年   44篇
  2001年   44篇
  2000年   49篇
  1999年   41篇
  1998年   30篇
  1997年   27篇
  1996年   20篇
  1995年   12篇
  1994年   15篇
  1993年   9篇
  1992年   5篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有1878条查询结果,搜索用时 687 毫秒
941.
Abstract Ecosystem patterns and disturbance processes at one spatial scale often interact with processes at another scale, and the result of such cross-scale interactions can be nonlinear dynamics with thresholds. Examples of cross-scale pattern-process relationships and interactions among forest dieback, fire, and erosion are illustrated from northern New Mexico (USA) landscapes, where long-term studies have recently documented all of these disturbance processes. For example, environmental stress, operating on individual trees, can cause tree death that is amplified by insect mortality agents to propagate to patch and then landscape or even regional-scale forest dieback. Severe drought and unusual warmth in the southwestern USA since the late 1990s apparently exceeded species-specific physiological thresholds for multiple tree species, resulting in substantial vegetation mortality across millions of hectares of woodlands and forests in recent years. Predictions of forest dieback across spatial scales are constrained by uncertainties associated with: limited knowledge of species-specific physiological thresholds; individual and site-specific variation in these mortality thresholds; and positive feedback loops between rapidly-responding insect herbivore populations and their stressed plant hosts, sometimes resulting in nonlinear “pest” outbreak dynamics. Fire behavior also exhibits nonlinearities across spatial scales, illustrated by changes in historic fire regimes where patch-scale grazing disturbance led to regional-scale collapse of surface fire activity and subsequent recent increases in the scale of extreme fire events in New Mexico. Vegetation dieback interacts with fire activity by modifying fuel amounts and configurations at multiple spatial scales. Runoff and erosion processes are also subject to scale-dependent threshold behaviors, exemplified by ecohydrological work in semiarid New Mexico watersheds showing how declines in ground surface cover lead to non-linear increases in bare patch connectivity and thereby accelerated runoff and erosion at hillslope and watershed scales. Vegetation dieback, grazing, and fire can change land surface properties and cross-scale hydrologic connectivities, directly altering ecohydrological patterns of runoff and erosion. The interactions among disturbance processes across spatial scales can be key drivers in ecosystem dynamics, as illustrated by these studies of recent landscape changes in northern New Mexico. To better anticipate and mitigate accelerating human impacts to the planetary ecosystem at all spatial scales, improvements are needed in our conceptual and quantitative understanding of cross-scale interactions among disturbance processes.  相似文献   
942.
The high-latitude terrestrial carbon sink: a model analysis   总被引:7,自引:1,他引:6  
A dynamic, global vegetation model, hybrid v4.1 ( Friend et al. 1997 ), was driven by transient climate output from the UK Hadley Centre GCM (HadCM2) with the IS92a scenario of increasing atmospheric CO2 equivalent, sulphate aerosols and predicted patterns of atmospheric N deposition. Changes in areas of vegetation types and carbon storage in biomass and soils were predicted for areas north of 50°N from 1860 to 2100. Hybrid is a combined biogeochemical, biophysical and biogeographical model of natural, potential ecosystems. The effect of periodic boreal forest fires was assessed by adding a simple stochastic fire model. Hybrid represents plant physiological and soil processes regulating the carbon, water and N cycles and competition between individuals of parameterized generalized plant types. The latter were combined to represent tundra, temperate grassland, temperate/mixed forest and coniferous forest. The model simulated the current areas and estimated carbon stocks in the four vegetation types. It was predicted that land areas above 50°N (about 23% of the vegetated global land area) are currently accumulating about 0.4 PgC y?1 (about 30% of the estimated global terrestrial sink) and that this sink could grow to 0.8–1.0 PgC y?1 by the second half of the next century and persist undiminished until 2100. This sink was due mainly to an increase in forest productivity and biomass in response to increasing atmospheric CO2, temperature and N deposition, and includes an estimate of the effect of boreal forest fire, which was estimated to diminish the sink approximately by the amount of carbon emitted to the atmosphere during fires. Averaged over the region, N deposition contributed about 18% to the sink by the 2080 s. As expected, climate change (temperature, precipitation, solar radiation and saturation pressure deficit) and N deposition without increasing atmospheric CO2 produced a carbon source. Forest areas expanded both south and north, halving the current tundra area by 2100. This expansion contributed about 30% to the sink by the 2090 s. Tundra areas which were not invaded by forest fluctuated from sink to source. It was concluded that a high latitude carbon sink exists at present and, even assuming little effect of N deposition, no forest expansion and continued boreal forest fires, the sink is likely to persist at its current level for a century.  相似文献   
943.
Traditional biogeochemical theories suggest that ecosystem nitrogen retention is controlled by biotic N limitation, that stream N losses should increase with successional age, and that increasing N deposition will accelerate this process. These theories ignore the role of dissolved organic nitrogen (DON) as a mechanism of N loss. We examined patterns of organic and inorganic N export from sets of old-growth and historically (80–110 years ago) logged and burned watersheds in the northeastern US, a region of moderate, elevated N deposition. Stream nitrate concentrations were strongly seasonal, and mean (± SD) nitrate export from old-growth watersheds (1.4 ± 0.6 kg N ha−1 y−1) was four times greater than from disturbed watersheds (0.3 ± 0.3 kg N ha−1 y−1), suggesting that biotic control over nitrate loss can persist for a century. DON loss averaged 0.7 (± 0.2) kg N ha−1 y−1 and accounted for 28–87% of total dissolved N (TDN) export. DON concentrations did not vary seasonally or with successional status, but correlated with dissolved organic carbon (DOC), which varied inversely with hardwood forest cover. The patterns of DON loss did not follow expected differences in biotic N demand but instead were consistent with expected differences in DOC production and sorption. Despite decades of moderate N deposition, TDN export was low, and even old-growth forests retained at least 65% of N inputs. The reasons for this high N retention are unclear: if due to a large capacity for N storage or biological removal, N saturation may require several decades to occur; if due to interannual climate variability, large losses of nitrate may occur much sooner. Received 27 April 1999; accepted 30 May 2000.  相似文献   
944.
Abstract We examined post‐fire responses of two sympatric Australian rodents, Pseudomys gracilicaudatus and Rattus lutreolus, as coastal wet heath regenerated following two high intensity wildfires. Pseudomys gracilicaudatus, an early serai‐stage species, recolonized an area burnt in August 1974 after one year, but took only 3 months to recolonize another area following a wildfire in October 1994. Rattus lutreolus, a late serai‐stage specialist, took approximately 3.6 years to recolonize following wildfire in August 1974, but had recolonized after only 4 months following wildfire in October 1994. We suggest that this apparent anomaly is associated with the rate of recovery of vegetation density. When the relative abundance of each species was plotted as a function of vegetation density, the trajectories following the two wildfires were concordant. An implicit relationship exists between time since wildfire and vegetation density. We make this relationship explicit by quantifying cover requirements for each species, and show that it is the resource continuum borne of regenerating vegetation (rather than time per se) that is important in determining the timing of small mammal successional sequences.  相似文献   
945.
The impact that an exotic species can have on the composition of the community it enters is a function of its abundance, its particular species traits and characteristics of the recipient community. In this study we examined species composition in 14 sites burned in fires fuelled by non‐indigenous C4 grasses in Hawaii Volcanoes National Park, Hawaii. We considered fire intensity, time since fire, climatic zone of site, unburned grass cover, unburned native cover and identity of the most abundant exotic grass in the adjacent unburned site as potential predictor variables of the impact of fire upon native species. We found that climatic zone was the single best variable for explaining variation in native cover among burned sites and between burned and unburned pairs. Fire in the eastern coastal lowlands had a very small effect on native plant cover and often stimulated native species regeneration, whereas fire in the seasonal submontane zone consistently caused a decline in native species cover and almost no species were fire tolerant. The dominant shrub, Styphelia tameiameia, in particular was fire intolerant. The number of years since fire, fire intensity and native cover in reference sites were not significantly correlated with native species cover in burned sites. The particular species of grass that carried the fire did however, have a significant effect on native species recovery. Where the African grass Melinis minutiflora was a dominant or codominant species, fire impacts were more severe than where it was absent regardless of climate zone. Overall, the impacts of exotic grass‐fuelled fires on native species composition and cover in seasonally dry Hawaiian ecosystems was context specific. This specificity is best explained by differences between the climatic zones in which fire occurred. Elevation was the main physical variable that differed among the climatic zones and it alone could explain a large percentage of the variation in native cover among sites. Rainfall, by contrast, did not vary systematically with elevation. Elevation is associated with differences in composition of the native species assemblages. In the coastal lowlands, the native grass Heteropogon contortus, was largely responsible for positive changes in native cover after fire although other native species also increased. Like the exotic grasses, this species is a perennial C4 grass. It is lacking in the submontane zone and there are no comparable native species there and almost all native species in the submontane zone were reduced by fire. The lack of fire tolerant species in the submontane zone thus clearly contributes to the devastating impact of fire upon native cover there.  相似文献   
946.
Abstract LANDSAT Multi‐Spectral Scanner imagery was used to determine aspects of the fire regimes of Kakadu National Park (in the wet‐dry tropics of Australia) for the period 1980–1995. Three landscape types recognized in this Park were Plateau, Lowlands and Floodplain. Areas burned in early and late dry seasons each year were documented using a Geographical Information System. Regression analyses were used to examine time trends in the areas burned each year and the interrelationships between early and late dry season burning. The proportions of landscapes having different stand ages (years since fire), and the proportions having had different fire intervals, were compared with results expected from the simplest random model (i.e. one in which the probability of ignition at a point [PIP] burning annually was constant). Using overlays of successive stand‐age maps, PIP could be calculated as a function of stand age. The Lowlands burned extensively each year; the areas burned by late dry season fires adding to those burned in the early dry season such that around 50–60% of the total area burned annually. Early dry season fires have lower intensities than late dry season fires, on average. Using a theoretically constant PIP and the mean proportion burned per year as the only input, predictions of areas burned as a function of stand age and fire interval were reasonable when compared with the empirical data, but best for the Lowlands landscape. PIP functions for Lowlands and Floodplains had negative slopes, an unexpected result. The nature of these PIP functions may reflect heterogeneity in fire proneness of the various vegetation types within landscapes. The scale of measurement, the scale of variation in vegetation types within a landscape, and the accuracy of the determination of burned areas, are constraints on the accuracy of fire‐interval and seasonally determination perceived from an analysis of satellite data.  相似文献   
947.
There is variability in the period that serotinous species retain seeds in protective closed cones and in the sizes of the cones. Seed predation and inter‐fire recruitment have been suggested to be reasons for this variability. I argue against these two reasons. Variation in annual rates of increase in fecundity and in numbers of flowering episodes before fire should be correlated with the degree of serotiny. These two attributes are a consequence of cone size, plant architecture and degree of serotiny.  相似文献   
948.
949.
免耕高留茬抛秧对稻田土壤肥力和微生物群落的影响   总被引:7,自引:0,他引:7  
通过大田试验,研究了不同秸秆还田和耕作方式(免耕+秸秆还田、免耕、常耕+秸秆还田、常耕)对稻田不同层次土壤肥力和主要微生物类群数量的影响.结果表明:上层土壤中,免耕+秸秆还田处理的有机质含量分别比免耕、常耕+秸秆还田和常耕处理高5.33、2.79和5.37 g·kg-1;全氮、全磷、全钾、碱解氮、速效磷和速效钾含量也均以免耕+秸秆还田处理最高,免耕和常耕+秸秆还田处理次之,常耕处理最低.下层土壤中,各肥力指标以常耕+秸秆还田处理较高.秸秆还田各处理微生物类群数量较高,上层土壤以免耕+秸秆还田处理的细菌、真菌和放线菌数量最高,成熟期其纤维分解强度分别比常耕+秸秆还田、免耕和常耕处理高26.44%、79.01%和98.15%;下层土壤以常耕+秸秆还田处理的细菌、真菌和放线菌数量最高.免耕+秸秆还田处理的土壤养分和微生物呈表层富集特征.细菌、放线菌和纤维分解强度与土壤肥力各指标呈显著或极显著正相关关系.  相似文献   
950.
烟羽喷射高度是烟气羽流运动一个关键驱动因素,决定了烟气气溶胶在大气中的寿命、顺风运输扩散路径及其对大气环境的影响程度.本研究对最新的多角度成像光谱仪(MISR)野火烟羽高度数据库中的原始数据进行提取和处理,获取中国区域的野火羽流高度相关参数,采用统计分析的方法研究野火烟羽喷射高度的变化情况,探究了火灾特征(燃烧生物质类...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号