首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   870篇
  免费   88篇
  国内免费   22篇
  2024年   1篇
  2023年   32篇
  2022年   31篇
  2021年   57篇
  2020年   39篇
  2019年   33篇
  2018年   42篇
  2017年   29篇
  2016年   32篇
  2015年   40篇
  2014年   54篇
  2013年   49篇
  2012年   35篇
  2011年   39篇
  2010年   42篇
  2009年   49篇
  2008年   41篇
  2007年   40篇
  2006年   34篇
  2005年   29篇
  2004年   31篇
  2003年   20篇
  2002年   27篇
  2001年   14篇
  2000年   19篇
  1999年   10篇
  1998年   9篇
  1997年   18篇
  1996年   11篇
  1995年   12篇
  1994年   9篇
  1993年   9篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   1篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有980条查询结果,搜索用时 562 毫秒
51.
Lineage persistence is as central to biology as evolutionary change. Important questions regarding persistence include: why do some lineages outlive their relatives, neither becoming extinct nor evolving into separate lineages? Do these long‐duration lineages have distinctive ecological or morphological traits that correlate with their geologic durations and potentially aid their survival? In this paper, I test the hypothesis that lineages (species and higher taxa) with longer geologic durations have morphologies that are more average than expected by chance alone. I evaluate this hypothesis for both individual lineages with longer durations and groups of lineages with longer durations, using more than 60 published datasets of animals with adequate fossil records. Analyses presented here show that groups of lineages with longer durations fall empirically into one of three theoretically possible scenarios, namely: (1) the morphology of groups of longer duration lineages is closer to the grand average of their inclusive group, that is, their relative morphological distance is smaller than expected by chance alone, when compared with rarified samples of their shorter duration relatives (a negative group morpho‐duration distribution); (2) the relative morphological distance of groups of longer duration lineages is no different from rarified samples of their shorter duration relatives (a null group morpho‐duration distribution); and (3) the relative morphological distance of groups of longer duration lineages is greater than expected when compared with rarified samples of their shorter duration relatives (a positive group morpho‐duration distribution). Datasets exhibiting negative group morpho‐duration distributions predominate. However, lineages with higher ranks in the Linnean hierarchy demonstrate positive morpho‐duration distributions more frequently. The relative morphological distance of individual longer duration lineages is no different from that of rarified samples of their shorter duration relatives (a null individual morpho‐duration distribution) for the majority of datasets studied. Contrary to the common idea that very persistent lineages are special or unique in some significant way, both the results from analyses of long‐duration lineages as groups and individuals show that they are morphologically average. Persistent lineages often arise early in a group's history, even though there is no prior expectation for this tendency in datasets of extinct groups. The implications of these results for diversification histories and niche preemption are discussed.  相似文献   
52.
The cerebral cortex is composed of a large variety of distinct cell‐types including projection neurons, interneurons, and glial cells which emerge from distinct neural stem cell lineages. The vast majority of cortical projection neurons and certain classes of glial cells are generated by radial glial progenitor cells in a highly orchestrated manner. Recent studies employing single cell analysis and clonal lineage tracing suggest that neural stem cell and radial glial progenitor lineage progression are regulated in a profound deterministic manner. In this review we focus on recent advances based mainly on correlative phenotypic data emerging from functional genetic studies in mice. We establish hypotheses to test in future research and outline a conceptual framework how epigenetic cues modulate the generation of cell‐type diversity during cortical development.  相似文献   
53.
A recent phylogenetic study based only on chloroplast DNA (cpDNA) variation revealed that populations of an Isodon species are frequently embedded paraphyletically among other Isodon species. This phylogenetic discrepancy between species taxonomy and molecular phylogeny was considered to have resulted from chloroplast DNA captures and/or incomplete lineage sorting. To elucidate which of these factors was mainly responsible for the observed phylogenetic pattern, we performed phylogenetic analyses of multiple populations of Isodon species in Japan using cpDNA variation, three single-copy nuclear genes, and double-digest restriction-site-associated DNA sequencing (ddRAD-seq). Although a species often shared chlorotypes with other species, our phylogenetical analyses based on variation in the three single-copy nuclear genes and the ddRAD-seq data showed that most populations belonging to the same species were monophyletic at the species level, suggesting that chloroplast capture may have frequently occurred between Isodon species. Some populations of an intraspecific taxon were embedded paraphyletically within the species, regardless of the large amount of phylogenetic information in nuclear DNA; this incongruity may have resulted from incomplete lineage sorting.  相似文献   
54.
Different anteroposterior (AP) regions of the neural crest normally produce different cell types, both in vivo and in vitro. AP differences in neural crest cell fates appear to be specified in part by mechanisms that act prior to neural crest cell migration. We, therefore, examined the possibility that the fates of neural crest cells, like those of neural tube cells, can be regulated by interactions with Hensen's node. Using a transfilter co-culture system, we found that young (stage 3+ to 4) Hensen's node up-regulates the expression of two cranial-specific phenotypes (fibronectin and smooth muscle actin immunoreactivities) in mass cultures of trunk neural crest cells, and down-regulates the expression of a trunk-specific phenotype (melanin synthesis). The changes in phenotype produced by exposure to young Hensen's node were not accompanied by changes in the proliferation of either fibronectin immunoreactive cells or melanocytes. The capacity of Hensen's node to elicit changes in trunk neural crest cell phenotype decreased as the developmental age of the node increased and was lost by stage 6. In addition, old Hensen's node did not stimulate the expression of trunk-specific phenotypes in cranial neural crest cells, suggesting that cranial- and trunk-specific phenotypes are induced by different mechanisms. © 1996 John Wiley & Sons, Inc.  相似文献   
55.
Cell lineage studies in the clade Eutrochozoa, and especially the Spiralia, remains a rich and relatively untapped source for understanding broad evolutionary developmental problems; including (1) the utility of cell timing formation for phylogenetic hypotheses; (2) the evolution of cell timing changes and its relation to heterochronic patterns; (3) stereotypy or lack thereof in rates of change of cell growth during evolution and its relation to both evolutionary history and current usage; and (4) how mosaic cleavage timing variation may be expected to differ from other groups. A compilation of available cell timing information was made from previous studies where each division was explicitly followed and the total number of cells followed was greater than 24. From that compilation, we performed a series of heuristic and quantitative analyses, including a phylogenetic analysis using cell timing data as characters and analyses of timing variation across all taxa. Our results show that: (1) cell lineage data reconstructs a phylogenetic hypothesis that has similarities, especially among the Mollusca. to the patterns found in morphological and molecular analyses; (2) the mesentoblast (4d) is a unique cell compared to other cell in that it speeds up and slows down relative to other cells in taxa with both unequal and equal cell sizes; (3) some cells that form in the same quartet at the same point in the cell lineage hierarchy have much lower variations than analogous other cells, arguing for architectural constraint or stabilizing selection acting on those cells; and (4) although variation in cell timing generally increases during development, timing of formation of progeny cells in the first quartet has lower variation than the parent cells, arguing that some regulation-like behavior might be present.  相似文献   
56.
Oligodendroglial lineage cells (OLC) vary in susceptibility to both necrosis and apoptosis depending on their developmental stages, which might be regulated by differential expression of Bcl-2-related genes. As an initial step to test this hypothesis, we examined the expression of 19 Bcl-2-related genes in purified cultures of rat oligodendroglial progenitors, immature and mature oligodendrocytes. All 'multidomain' anti-apoptotic members (Bcl-x, Bcl-2, Mcl-1, Bcl-w and Bcl2l10/Diva/Boo) except Bcl2a1/A1 are expressed in OLC. Semiquantitative and real-time RT-PCR revealed that Bcl-xL and Mcl-1 mRNAs are the dominant anti-apoptotic members and increase four- and twofold, respectively, with maturation. Bcl-2 mRNA is less abundant than Bcl-xL mRNA in progenitors and falls an additional 10-fold during differentiation. Bcl-w mRNA also increases, with significant changes in its splicing pattern, as OLC mature. Transfection studies demonstrated that Bcl-xL overexpression protects against kainate-induced excitotoxicity, whereas Bcl-2 overexpression does not. As for 'multidomain' pro-apoptotic members (Bax, Bad and Bok/Mtd), Bax and Bak are highly expressed throughout differentiation. Among 'BH3 domain-only' members examined (Bim, Biklk, DP5/Hrk, Bad, Bid, Noxa, Puma/Bbc3, Bmf, BNip3 and BNip3L), BNip3 and Bmf mRNAs increase markedly during differentiation. These results provide basic information to guide further studies on the roles for Bcl-2-related family proteins in OLC death.  相似文献   
57.
We describe the complete embryonic cell lineage of the marine nematode Pellioditis marina (Rhabditidae) up to somatic muscle contraction, resulting in the formation of 638 cells, of which 67 undergo programmed cell death. In comparison with Caenorhabditis elegans, the overall lineage homology is 95.5%; fate homology, however, is only 76.4%. The majority of the differences in fate homology concern nervous, epidermal, and pharyngeal tissues. Gut and, remarkably, somatic muscle is highly conserved in number and position. Partial lineage data from the slower developing Halicephalobus sp. (Panagrolaimidae) reveal a lineage largely, but not exclusively, built up of monoclonal sublineage blocs with identical fates, unlike the polyclonal fate distribution in C. elegans and P. marina. The fate distribution pattern in a cell lineage could be a compromise between minimizing the number of specification events by monoclonal specification and minimizing the need for migrations by forming the cells close at their final position. The latter could contribute to a faster embryonic development. These results reveal that there is more than one way to build a nematode.  相似文献   
58.
To critically examine the relationship between species recognized by phylogenetic and reproductive compatibility criteria, we applied phylogenetic species recognition (PSR) to the fungus in which biological species recognition (BSR) has been most comprehensively applied, the well-studied genus Neurospora. Four independent anonymous nuclear loci were characterized and sequenced from 147 individuals that were representative of all described outbreeding species of Neurospora. We developed a consensus-tree approach that identified monophyletic genealogical groups that were concordantly supported by the majority of the loci, or were well supported by at least one locus but not contradicted by any other locus. We recognized a total of eight phylogenetic species, five of which corresponded with the five traditional biological species, and three of which were newly discovered. Not only were phylogenetic criteria superior to traditional reproductive compatibility criteria in revealing the full species diversity of Neurospora, but also significant phylogenetic subdivisions were detected within some species. Despite previous suggestions of hybridization between N. crassa and N. intermedia in nature, and the fact that several putative hybrid individuals were included in this study, no molecular evidence in support of recent interspecific gene flow or the existence of true hybrids was observed. The sequence data from the four loci were combined and used to clarify how the species discovered by PSR were related. Although species-level clades were strongly supported, the phylogenetic relationships among species remained difficult to resolve, perhaps due to conflicting signals resulting from differential lineage sorting.  相似文献   
59.
The phylogegraphic pattern of Cycas taitungensis, an endemic species with two remaining populations in Taiwan, was investigated based on genetic variability and phylogeny of the atpB-rbcL noncoding spacer of chloroplast DNA (cpDNA) and the ribosomal DNA (rDNA) internal transcribed spacer (ITS) of mitochondrial DNA (mtDNA). High levels of genetic variation at both organelle loci, due to frequent intramolecular recombination, and low levels of genetic differentiation were detected in the relict gymnosperm. The apportionment of genetic variation within and between populations agreed with a migrant-pool model, which describes a migratory pattern with colonists recruited from a random sample of earlier existing populations. Phylogenies obtained from cpDNA and mtDNA were discordant according to neighbour-joining analyses. In total four chlorotypes (clades I-IV) and five mitotypes (clades A-E) were identified based on minimum spanning networks of each locus. Significant linkage disequilibrium in mitotype-chlorotype associations excluded the possibility of the recurrent homoplasious mutations as the major force causing phylogenetic inconsistency. The most abundant chlorotype I was associated with all mitotypes and the most abundant mitotype C with all chlorotypes; no combinations of rare mitotypes with rare chlorotypes were found. According to nested clade analyses, such nonrandom associations may be ascribed to relative ages among alleles associated with the geological history through which cycads evolved. Nested in networks as interior nodes coupled with wide geographical distribution, the most dominant cytotypes of CI and EI may represent ancestral haplotypes of C. taitungensis with a possible long existence prior to the Pleistocene glacial maximum. In contrast, rare chlorotypes and mitotypes with restricted and patchy distribution may have relatively recent origins. Newly evolved genetic elements of mtDNA, with a low frequency, were likely to be associated with the dominant chlorotype, and vice versa, resulting in the nonrandom mitotype-chlorotype associations. Paraphyly of CI and EI cytotypes, leading to the low level of genetic differentiation between cycad populations, indicated a short period for isolation, which allowed low possibilities of the attainment of coalescence at polymorphic ancestral alleles.  相似文献   
60.
History and function of scale microornamentation in lacertid lizards   总被引:3,自引:0,他引:3  
Differences in surface structure (ober-hautchen) of body scales of lacertid lizards involve cell size, shape and surface profile, presence or absence of fine pitting, form of cell margins, and the occurrence of longitudinal ridges and pustular projections. Phylogenetic information indicates that the primitive pattern involved narrow strap-shaped cells, with low posteriorly overlapping edges and relatively smooth surfaces. Deviations from this condition produce a more sculptured surface and have developed many times, although subsequent overt reversals are uncommon. Like variations in scale shape, different patterns of dorsal body microornamentation appear to confer different and conflicting performance advantages. The primitive pattern may reduce friction during locomotion and also enhances dirt shedding, especially in ground-dwelling forms from moist habitats. However, this smooth microornamentation generates shine that may compromise cryptic coloration, especially when scales are large. Many derived features show correlation with such large scales and appear to suppress shine. They occur most frequently in forms from dry habitats or forms that climb in vegetation away from the ground, situations where dirt adhesion is less of a problem. Microornamentation differences involving other parts of the body and other squamate groups tend to corroborate this functional interpretation. Microornamentation features can develop on lineages in different orders and appear to act additively in reducing shine. In some cases different combinations may be optimal solutions in particular environments, but lineage effects, such as limited reversibility and different developmental proclivities, may also be important in their genesis. The fine pits often found on cell surfaces are unconnected with shine reduction, as they are smaller than the wavelengths of most visible light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号