首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   2篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   16篇
  2013年   5篇
  2012年   3篇
  2011年   7篇
  2010年   11篇
  2009年   23篇
  2008年   17篇
  2007年   17篇
  2006年   16篇
  2005年   13篇
  2004年   10篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   9篇
  1999年   6篇
  1998年   6篇
  1997年   10篇
  1996年   6篇
  1995年   9篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1990年   5篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有246条查询结果,搜索用时 31 毫秒
171.
Summary Odorant-binding proteins are supposed to play an important role in stimulus transport and/or inactivation in olfactory sense organs. In an attempt to precisely localize pheromone-binding protein in the antenna of moths, post-embedding immunocytochemistry was performed using an antiserum against purified pheromone-binding protein of Antheraea polyphemus. In immunoblots of antennal homogenates, the antiserum reacted exclusively with pheromone-binding protein of A. polyphemus, and cross-reacted with homologous proteins of Bombyx mori and Autographa gamma. On sections of antennae of male A. polyphemus and B. mori, exclusively the pheromone-sensitive sensilla trichodea are labelled; in A. gamma, label is restricted to a subpopulation of morphologically similar sensilla trichodea, which indicates that not all pheromone-sensitive sensilla contain the same type of pheromone-binding protein and accounts for a higher specificity of pheromone-binding protein than hitherto assumed. Within the sensilla trichodea, the extracellular sensillum lymph of the hair lumen and of the sensillum-lymph cavities is heavily labelled. Intracellular label is mainly found in the trichogen and tormogen cells: in endoplasmic reticulum, Golgi apparatus, and a variety of dense granules. Endocytotic pits and vesicles, multivesicular bodies and lysosome-like structures are also labelled and can be observed not only in these cells, but also in the thcogen cell and in the receptor cells. Cell membranes are not labelled except the border between thecogen cell and receptor cell and the autojunction of the thecogen cell. The intracellular distribution of label indicates that pheromone-binding protein is synthesized in the tormogen and trichogen cell along typical pathways of protein secretion, whereas its turnover and decomposition does not appear to be restricted to these cells but may also occur in the thecogen and receptor cells. The immunocytochemical findings are discussed with respect to current concepts of the function of pheromone-binding protein.  相似文献   
172.
1.  The physiology and morphology of olfactory interneurons in the brain of larval Manduca sexta were studied using intracellular recording and staining techniques. Antennal olfactory receptors were stimulated with volatile substances from plants and with pure odorants. Neurons responding to the stimuli were investigated further to reveal their response specificities, dose-response characteristics, and morphology.
2.  We found no evidence of specific labeled-lines among the odor-responsive interneurons, as none responded exclusively to one plant odor or pure odorant; most olfactory interneurons were broadly tuned in their response spectra. This finding is consistent with an across-fiber pattern of odor coding.
3.  Mechanosensory and olfactory information are integrated at early stages of central processing, appearing in the responses of some local interneurons restricted to the primary olfactory nucleus in the brain, the larval antennal center (LAC).
4.  The responses of LAC projection neurons and higher-order protocerebral interneurons to a given odor were more consistent than the responses of LAC local interneurons.
5.  The LAC appears to be functionally subdivided, as both local and projection neurons had arborizations in specific parts of the LAC, but none had dendrites throughout the LAC.
6.  The mushroom bodies and the lateral protocerebrum contain neurons that respond to olfactory stimulation.
  相似文献   
173.
We have isolated about a thousandDrosophila P-element transposants that allow thein situ detection of genomic enhancer elements by a histochemical assay for β-galactosidase activity. We summarize the β-galactosidase staining patterns of over 200 such transposants in the adult. Our aim was to identify genes that are likely to be involved in the chemosensory and motor pathways ofDrosophila. Based on β-galactosidase expression patterns in the tissues of our interest, we have chosen some strains for further analysis. Behavioral tests on a subset of the transposants have, in addition, identified several strains defective in their chemosensory responses.  相似文献   
174.
Summary The temporal pattern of response in chemoreceptor neurons reflects both the temporal distribution of stimuli and the timing of signal transduction, action potential generation and propagation. Here we analyze the temporal characteristics of the responses elicited in pheromone receptor neurons by computer-controlled rectangular pulses of odorant. Extracellular recordings from the HS sensilla trichodea on the antenna of male Trichoplusia ni reveal the activity of two neurons: the A neuron, which responds to the major component of the female pheromone blend, (Z)7-dodecenyl acetate and the B neuron, which responds to (Z)7-dodecenol. B neurons were divided into two classes (HR, LR), based on the magnitude and temporal pattern of their response to (Z)7-dodecenol. Most A and HR B neurons responded to rectangular pulses of various durations (0.1–40 s) with an initial phasic burst (100 ms), followed by a slowly declining tonic component. At moderate and elevated pheromone doses, prolonged stimulation resulted in significant reductions in the tonic response levels (adaptation); stimuli of increasing duration effected greater adaptation. Most LR B neurons lacked a phasic response component and showed virtually no adaptation with prolonged stimulation. Pheromone receptor neurons may differ in both their spectral and temporal response properties which may provide the animal with additional sensory information for blend discrimination and spatial orientation in complex natural pheromone plumes. The potential functional value of adaptation in the moth pheromone communication system is discussed.Abbreviations Z7,12:AC (Z)7-dodecenyl acetate - Z7,12:OH (Z)7-dodecenol - HR High response - LR Low response - HS High sensitivity  相似文献   
175.
We have documented odor responses of all morphological classes of sensilla on the surface of theDrosophila antenna: sensilla basiconica, sensilla trichodea, and sensilla coeloconica. Both subtypes of s. basiconica, large and small, respond to odors. S. trichodea fall into different functional types. Type 1 appears narrowly tuned, as it responded only tocis-vaccenyl acetate, believed to be a pheromone. Type 2 responded totrans-2-hexenal and 4-methyl cyclohexanol. These two types of s. trichodea are differentially distributed on the antennal surface, and have dramatically different frequencies of spontaneous action potentials. Likewise, there are multiple types of s. coeloconica. One type is broadly tuned, responding most strongly to a test stimulus of butyric acid, but also to a variety of other odors; it is restricted to the dorso-medial portion of the third antennal segment. A second type gave detectable responses only totrans-2-hexenal. These results demonstrate that all classes of sensilla are olfactory, and they reveal the organizational complexity of theDrosophila olfactory system.  相似文献   
176.
V. O. Nams 《Oecologia》1997,110(3):440-448
The formation of search images can create density-dependent predation. Predators have been shown to form search images when searching for many small prey items in one feeding session. This paper reports experiments that test whether striped skunks can form olfactory search images in other situations: when prey are found over several days, when prey are large, and when prey are found in certain habitats. Striped skunks were raised in captivity, and their reaction distance to food was measured outside in a natural grassy area. In experiment 1 skunks were offered many small food items for several days in a row. From one day to the next, skunks initially detected food from further away, they increased detection distance faster and their maximum detection distance increased – i.e., they formed olfactory search images faster and stronger from one day to the next. In experiment 2 skunks formed search images over several days when finding only one large food item per day. In experiment 3 skunks lost olfactory search images when they entered habitats in which they had previously searched for another type of food. These long-term search images magnify the effects of short-term search images, extend the effects of short- term search image to longer time spans, and affect different species from short-term search images. Received: 26 July 1996 / Accepted: 13 December 1996  相似文献   
177.
1.  The specificity and sensitivity of the olfactory organ of adult zebrafish, Danio rerio, to selected amino acid, bile acid, and steroid odorants were characterized using the electro-olfactogram recording technique. The olfactory organ was responsive to 28 of the 29 odorants tested.
2.  All of the 100 M amino acid and bile acid stimulants elicited a negative-going response that was significantly greater than the response to the artificial freshwater control. The general pattern of relative stimulatory effectiveness established for the amino acid stimuli was neutral amino acids > basic amino acids > acidic amino acids > imino acids. The general pattern of relative stimulatory effectiveness of 100 M bile acid stimuli was taurine-conjugated bile acids > glycineconjugated bile acids non-conjugated bile acids. The responses to the most stimulatory bile acid odorants were up to 40% larger than the responses to the most stimulatory amino acid odorants.
3.  The response threshold for cysteine and taurocholic acid, the most stimulatory of the amino acid and bile acid stimuli tested, was approximately 10-8 M. Females are significantly more sensitive to these odorants than males.
  相似文献   
178.
Selection for the oviposition site represents the criterion for the behavioral process of habitat selection for the next generation. It is well known that in Odonata the most general cues are detected visually, but laboratory investigations on the coenagrionid Ischnura elegans showed through behavioral and electrophysiological assays that adults were attracted by olfactory cues emitted by prey and that males of the same species are attracted by female odor.The results of the present behavioral and electrophysiological investigations on I. elegans suggest the involvement of antennal olfactory sensilla in oviposition behavior. In particular, I. elegans females laid in the laboratory significantly more eggs in water from larval rearing aquaria than in distilled or tap water. Moreover, the lack of preference between rearing water and tap water with plankton suggests a role of volatiles related to conspecific and plankton presence in the oviposition site choice. I. elegans may rely on food odor for oviposition site selection, thus supporting the predictions of the “mother knows best” theory. These behavioral data are partially supported by electroantennographic responses. These findings confirm a possible role of olfaction in crucial aspects of Odonata biology.  相似文献   
179.
In sheep the onset of maternal responsiveness and the development of the mutual mother-young bond are under the combined influence of hormonal and visceral somatosensory stimulations. These stimuli are provided in the mother by parturition (via steroids and vaginocervical stimulation) and in the neonate by the first suckling episodes (via cholecystokinin and oro-gastro-intestinal stimulation). In addition, each partner relies on specific chemosensory stimulation for reciprocal attraction: amniotic fluids for the mother, colostrum for the young. In the ewe parturition activates several brain structures to respond specifically to sensory cues emanating from the young. The main olfactory bulbs undergo profound neurophysiological changes when exposed to offspring odors at parturition. Additional activations in the hypothalamus - preoptic area - and the amygdala - medial and cortical nuclei - also contribute to maternal responsiveness and memorization of lamb odors. In the neonate, post-ingestive stimulations activate the brain stem via vagal afferents. Like in the ewe, several regions of the hypothalamus and the amygdala respond to colostrum ingestion suggesting common ground for the integrative neural processes involved in early learning and bonding. This leads to rapid visual and auditory recognition in both partners although olfaction remains important in the ewe to display selective nursing. It is concluded that the biological basis for the development of maternal and filial bonding in sheep presents striking similarities.  相似文献   
180.
Previous research showed that ferrets of both sexes rely on the perception of conspecifics' body odors to identify and motivate approach towards opposite-sex mating partners, and exposure to male body odors stimulated Fos expression in an olfactory projection circuit of female, but not male, ferrets that terminates in the ventromedial hypothalamic nucleus (VMH). We asked whether the female-typical preference of ferrets to approach male as opposed to female body odors in Y-maze tests would be disrupted by VMH lesions. Sexually experienced female ferrets were ovo-hysterectomized prior to receiving bilateral electrolytic lesions of the VMH, the preoptic area/anterior hypothalamus (POA/AH) or a sham operation. Subsequently, while receiving estradiol benzoate, females that received either complete or partial bilateral lesions of the VMH approached volatile odors from an anesthetized male on significantly fewer trials than females given POA/AH lesions or a sham operation. Both groups of ferrets with VMH lesion damage reliably discriminated between volatile anal scents as well as urinary odors from the 2 sexes in home cage habituation/dishabituation tests, suggesting that their odor-based sex discrimination remained intact. Females with complete bilateral VMH lesions showed significantly lower acceptance of neck gripping from a stimulus male (receptivity) and more aggression towards the male than all other groups of female subjects. Estrogen-sensitive neurons in the VMH appear to play a central role in female-typical neural processing of odor inputs leading to a preference to seek out a male sex partner, in addition to facilitating females' sexual receptivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号