首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   459篇
  免费   29篇
  国内免费   8篇
  2023年   9篇
  2022年   9篇
  2021年   18篇
  2020年   15篇
  2019年   26篇
  2018年   15篇
  2017年   24篇
  2016年   16篇
  2015年   12篇
  2014年   18篇
  2013年   41篇
  2012年   24篇
  2011年   37篇
  2010年   12篇
  2009年   21篇
  2008年   14篇
  2007年   12篇
  2006年   13篇
  2005年   22篇
  2004年   13篇
  2003年   13篇
  2002年   15篇
  2001年   8篇
  2000年   12篇
  1999年   6篇
  1998年   8篇
  1997年   10篇
  1996年   6篇
  1995年   9篇
  1994年   3篇
  1993年   4篇
  1992年   7篇
  1991年   2篇
  1990年   6篇
  1988年   1篇
  1987年   3篇
  1984年   4篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   2篇
排序方式: 共有496条查询结果,搜索用时 15 毫秒
41.
The potential for parallel impacts of habitat change on multiple biodiversity levels has important conservation implications. We report on the first empirical test of the 'species-genetic diversity correlation' across co-distributed taxa with contrasting ecological traits in the context of habitat fragmentation. In a rainforest landscape undergoing conversion to oil palm, we show that depauperate species richness in fragments is mirrored by concomitant declines in population genetic diversity in the taxon predicted to be most susceptible to fragmentation. This association, not seen in the other species, relates to fragment area rather than isolation. While highlighting the over-simplification of extrapolating across taxa, we show that fragmentation presents a double jeopardy for some species. For these, conserving genetic diversity at levels of pristine forest could require sites 15-fold larger than those needed to safeguard species numbers. Importantly, however, each fragment contributes to regional species richness, with larger ones tending to contain more species.  相似文献   
42.
This study presents a special, economically valuable, unprecedented eco-friendly green process for the synthesis of silver nanoparticles. The silver nanoparticles were obtained from a waste material with oil palm biosolid extract as the reducing agent. The use of the oil palm biosolid extract for the nanoparticle synthesis offers the benefit of amenability for large-scale production. An aqueous solution of silver (Ag(+) ) ions was treated with the oil palm biosolid extract for the formation of Ag nanoparticles. The nanometallic dispersion was characterized by surface plasmon absorbance measuring 428 nm. Transmission electron microscopy showed the formation of silver nanoparticles in the range of 5-50 nm. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction analysis of the freeze-dried powder confirmed the formation of metallic silver nanoparticles. Moreover, Fourier Transform Infrared Spectroscopy provided evidence of phenolics or proteins as the biomolecules that were likely responsible for the reduction and capping agent, which helps to increase the stability of the synthesized silver nanoparticles. In addition, we have optimized the production with various parameters.  相似文献   
43.
In December 2003, a severe general yellowing and death of the fronds of date palm (Phoenix dactylifera) occurred in a grove in the vicinity of Kazeron district, west of Fars province, Iran. Fusarium solani was isolated from the crown, and xylem rays sampled from the trunk 1.5 m above soil level. In pathogenicity tests using artificially infested soil and 1‐year‐old date palm seedlings, an isolate from the trunk (FST) induced general chlorosis and death of seedlings 25–28 days after inoculation. Similar results were obtained when seedlings were planted in naturally infested soil. In both procedures, distal portions of the roots and crown were affected. The fungus was re‐isolated from the crown and leaf bases of the inoculated seedlings. This is the first report of a serious disease of date palm, which we call yellow death, incited by F. solani in Iran.  相似文献   
44.
This article examines transformations associated with changes in resource use and land cover dynamics in the community of São Manoel, Maranhão state, in the eastern Brazilian Amazon. The shifting cultivator peasants in São Manoel integrate swidden fields for annual cropping, the extraction of babassu palm products, and pastures for cattle ranching. Since the early twentieth century, predominant vegetative cover patterns have been altered from species-rich mature forests to secondary succession with babassu dominant to pasture or swidden fields containing palm stands of various densities. A grounded political ecology of resource use in the area suggests that management strategies and the resulting land cover dynamics integrate site-specific decisions of peasant producers. I discuss the trajectory of production strategies in São Manoel since the establishment of the community in the 1920s, and identify the multiple dimensions affecting resource use and environmental outcomes, with an emphasis on the period following land struggles and the recovery of peasant tenure rights in the mid-1980s. The analysis indicates that socionatural trajectories that optimize resource use and address the socioeconomic needs of the community include the maintenance of palm/pastures associations.  相似文献   
45.
Oil palm estates in southeast Asia suffer from substantial losses due to basal stem rot caused by Ganoderma boninense. Field observations have been carried out in North Sumatra, Indonesia, on a series of planting materials of known origin. Differences in susceptibility to the disease have been detected within the two Elaeis species, guineensis and oleifera. Within Elaeis guineensis, material of Deli origin is highly susceptible compared to material of African origin. It is also possible to detect differences in reaction between parents and between crosses within a given origin. The variability of resistance to basal stem rot within the same cross is also illustrated by the diverse responses of clones derived from palms of the same origin. The prospects opened up by these results are discussed, and the importance of performing an early selection test is highlighted.  相似文献   
46.
Studies on oil palm trunks as sources of infection in the field   总被引:1,自引:0,他引:1  
Flood J  Keenan L  Wayne S  Hasan Y 《Mycopathologia》2005,159(1):101-107
Diseases of oil palm caused by Ganoderma boninense are of major economic importance in much of South-East Asia. This paper describes results from an ongoing field trial concerning the spread of the pathogen from artificially inoculated trunks used to simulate spread from windrowed trunks. Three planting distances for bait seedlings revealed that the closer the seedling was planted to the source of inoculum the sooner it succumbed to the disease. However, infection only occurred when the trunks were mounded (covered with soil), and seedlings planted around uncovered trunks (at any distance) have showed no symptoms of disease to date. Isolates are being collected from infected plants and molecular analysis is being undertaken to give more information on the spread of the pathogen.  相似文献   
47.
Date palm (Phoenix dactylifera L.) is qualified as a 'tree' of great ecological and socio-economical importance in desert oases. Unfortunately, it is being decimated, especially in Morocco and Algeria, by a fusariosis wilt called bayoud and caused by Fusarium oxysporum f. sp. albedinis (Fao). Controlling this disease requires the implementation of an integrated management program. Breeding for resistance is one of the most promising component strategies of this program. Few naturally resistant cultivars with a mediocre fruit quality (dates) are known. Conventional and non-conventional methods are under development and have to use the simplest and easiest methods to screen for resistant individuals. The use of pathogen toxins as selective agents at the tissue culture step might be a source of variability that can lead to the selection of individuals with suitable levels of resistance to the toxin and/or to the pathogen among the genetic material available. Foa produces toxins such as fusaric, succinic, 3-phenyl lactic acids and their derivatives, marasmins and peptidic toxins. These toxins can be used bulked or separately as selective agents. The aim of this contribution was to give a brief overview on toxins and their use as a mean to select resistant lines and to initiate a discussion about the potential use of this approach for the date palm-Foa pathosystem. This review does not pretend to be comprehensive or exhaustive and was prepared mainly to highlight the potential use of Foa toxins for selecting date palm individuals with a suitable resistance level to bayoud using toxin-based selective media.  相似文献   
48.

Background and Aims

Seeds can accumulate in the soil or elsewhere, such as on the stems of palms when these are covered by persistent sheaths. These sheaths could act as a safe site for some species. Here, we studied whether persistent sheaths of the palm Attalea phalerata (Arecaceae) are available sites for seed accumulation in the Pantanal wetland of Brazil. We also investigated whether the composition, richness and diversity of species of seeds in the persistent sheaths are determined by habitat (riparian forest and forest patches) and/or season (wet and dry).

Methods

All accumulated material was collected from ten persistent sheaths along the stems of 64 A. phalerata individuals (16 per habitat and 16 per season). The material was then individually inspected under a stereomicroscope to record seed species and number.

Key Results

Of the 640 sheaths sampled, 65 % contained seeds (n = 3468). This seed bank included 75 species belonging to 12 families, and was primarily composed of small, endozoochoric seeds, with a few abundant species (Cecropia pachystachya and Ficus pertusa). Moraceae was the richest family (four species) and Urticaceae the most abundant (1594 seeds). Stems of A. phalerata in the riparian forest had 1·8 times more seeds and 1·3 times more species than those in forest patches. In the wet season we sampled 4·1 times more seeds and 2·2 more species on palm stems than in the dry season. Richness did not differ between habitats, but was higher in the wet season. Abundance was higher in forest patches and in the wet season.

Conclusions

Attalea phalerata stems contain a rich seed bank, comparable to soil seed banks of tropical forests. As most of these seeds are not adapted to grow in flooding conditions, palm stems might be regarded as safe sites for seeds (and seedlings) to escape from the seasonal flooding of the Pantanal.  相似文献   
49.
During January 2010, severe stunting symptoms were observed in clonally propagated oil palm (Elaeis guineensis Jacq.) in West Godavari district, Andhra Pradesh, India. Leaf samples of symptomatic oil palms were collected, and the presence of phytoplasma was confirmed by nested polymerase chain reaction (PCR) using universal phytoplasma‐specific primer pairs P1/P7 followed by R16F2n/R16R2 for amplification of the 16S rRNA gene and semi‐nested PCR using universal phytoplasma‐specific primer pairs SecAfor1/SecArev3 followed by SecAfor2/SecArev3 for amplification of a part of the secA gene. Sequencing and BLAST analysis of the ~1.25 kb and ~480 bp of 16S rDNA and secA gene fragments indicated that the phytoplasma associated with oil palm stunting (OPS) disease was identical to 16SrI aster yellows group phytoplasma. Further characterization of the phytoplasma by in silico restriction enzyme digestion of 16S rDNA and virtual gel plotting of sequenced 16S rDNA of ~1.25 kb using iPhyClassifier online tool indicated that OPS phytoplasma is a member of 16SrI‐B subgroup and is a ‘Candidatus Phytoplasma asteris’‐related strain. Phylogenetic analysis of 16S rDNA and secA of OPS phytoplasma also grouped it with 16SrI‐B. This is the first report of association of phytoplasma of the 16SrI‐B subgroup phytoplasma with oil palm in the world.  相似文献   
50.
Tropical peatlands cover over 25 Mha in Southeast Asia and are estimated to contain around 70 Gt of carbon. Peat swamp forest ecosystems are an important part of the region's natural resources supporting unique flora and fauna endemic to Southeast Asia. Over recent years, industrial plantation development on peatland, especially for oil palm cultivation, has created intense debate due to its potentially adverse social and environmental effects. The lack of objective up‐to‐date information on the extent of industrial plantations has complicated quantification of their regional and global environmental consequences, both in terms of loss of forest and biodiversity as well as increases in carbon emissions. Based on visual interpretation of high‐resolution (30 m) satellite images, we find that industrial plantations covered over 3.1 Mha (20%) of the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2010, surpassing the area of Belgium and causing an annual carbon emission from peat decomposition of 230–310 Mt CO2e. The majority (62%) of the plantations were located on the island of Sumatra, and over two‐thirds (69%) of all industrial plantations were developed for oil palm cultivation, with the remainder mostly being Acacia plantations for paper pulp production. Historical analysis shows strong acceleration of plantation development in recent years: 70% of all industrial plantations have been established since 2000 and only 4% of the current plantation area existed in 1990. ‘Business‐as‐usual’ projections of future conversion rates, based on historical rates over the past two decades, indicate that 6–9 Mha of peatland in insular Southeast Asia may be converted to plantations by the year 2020, unless land use planning policies or markets for products change. This would increase the annual carbon emission to somewhere between 380 and 920 Mt CO2e by 2020 depending on water management practices and the extent of plantations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号