首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   879篇
  免费   85篇
  国内免费   39篇
  2023年   26篇
  2022年   38篇
  2021年   36篇
  2020年   46篇
  2019年   52篇
  2018年   59篇
  2017年   22篇
  2016年   24篇
  2015年   26篇
  2014年   69篇
  2013年   67篇
  2012年   37篇
  2011年   42篇
  2010年   32篇
  2009年   38篇
  2008年   47篇
  2007年   36篇
  2006年   37篇
  2005年   21篇
  2004年   44篇
  2003年   24篇
  2002年   21篇
  2001年   19篇
  2000年   13篇
  1999年   12篇
  1998年   7篇
  1997年   8篇
  1996年   13篇
  1995年   8篇
  1994年   10篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   10篇
  1984年   9篇
  1983年   1篇
  1982年   7篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1973年   2篇
排序方式: 共有1003条查询结果,搜索用时 15 毫秒
51.
The aims of this study were to investigate how antennal olfactory cells of tsetse (Diptera: Glossinidae) code odour quality and how they are able to discriminate between attractive and repellent odours. For Glossina pallidipes Austen, a survey is presented of the cells' responses to attractive (1-octen-3-ol, acetone, 3-methylphenol, carbon dioxide) and repellent stimuli (2-methoxyphenol, acetophenone, lactic acid, naphthalene). In addition, the responses of these cells to binary mixtures and the dose-response curves of 1-octen-3-ol, 3-methylphenol, 2-methoxyphenol and acetophenone are presented. A minority of the cells responded to one attractant or repellent only, whereas the vast majority were excited by more than one of the attractive and/or repellent stimuli. It is proposed that the peripheral olfactory cells of tsetse discriminate between different compounds via an across-fibre pattern coding, in which the cells that specifically code for attractants or repellents may play a substantial role in composing a unique excitation pattern that informs the central nervous system about the specificity of odours.  相似文献   
52.
Long KP  Hu SJ  Duan YB  Xu H 《生理学报》1999,51(5):481-487
本文记录了大鼠损伤背根节神经元的自发放电活动。采用背根节慢性压迫动物模型,记录慢性压迫手术后3-10d背根节的自发放电。在记录的156根纤维中,观察到17根(占11A%)出现的动作电位峰峰间期以某一基础间期的整数倍模式出现的整数倍时间节律形式,其回归映射图为晶格状点阵结构,并且该时间形式受细胞膜上钠,钾通道的调控。  相似文献   
53.
The 28-kDa calcium-binding protein (calbindin) is a widely studied neuronal marker in the enteric nervous system of numerous species. Calbindin has previously been detected in myenteric neurons of rabbit ileum in which 3% of all myenteric neurons are calbindin-immunopositive. We have studied the detailed morphology and chemical coding of calbindin-immunopositive neurons in this segment of the gut. We have found calbindin immunoreactivity in both strongly and weakly stained neurons. Of these, the strongly immunoreactive neurons belong to the Dogiel type I category. These neurons project only to other ganglia and primary strands of the plexus and their processes never run to the muscle or mucosal layers. The neurons within this group are 29.5±6.6 m in length and 14.7±3.8 m in width. The second smaller group of immunoreactive cells (27%) label faintly and have different morphological properties. They are characterized by their round medium-sized cell bodies (long axis: 24.4±5.2 m; short axis: 15.5±2.9 m) and do not exhibit immunoreactivity either in their dendrites or in their axonal processes. Double-label studies show that all calbindin-immunopositive neurons lack immunoreactivity for nitric oxide synthase, vasoactive intestinal peptide and substance P but all are immunoreactive for the synthesizing enzyme of acetylcholine, choline acetyltransferase. Thus, populations of neurons containing calbindin are cholinergic interneurons in the myenteric plexus of rabbit ileum.This study was supported by grant OTKA T 34160  相似文献   
54.
Researchers studying neural coding have speculated that populations of neurons would more effectively represent the stimulus if the neurons "cooperated:" by interacting through lateral connections, the neurons would process and represent information better than if they functioned independently. We apply our new theory of information processing to determine the fidelity limits of simple population structures to encode stimulus features. We focus on noncooperative populations, which have no lateral connections. We show that they always exhibit positively correlated responses and that as population size increases, they perfectly represent the information conveyed by their inputs regardless of the individual neuron's coding scheme. Cooperative populations, which do have lateral connections, can, depending on the nature of the connections, perform better or worse than their noncooperative counterparts. We further show that common notions of synergy fail to capture the level of cooperation and to reflect the information processing properties of populations.  相似文献   
55.
Naturally occurring odors used by animals for mate recognition, food identification and other purposes must be detected at concentrations that vary across several orders of magnitude. Olfactory systems must therefore have the capacity to represent odors over a large range of concentrations regardless of dramatic changes in the salience, or perceived intensity, of a stimulus. The stability of the representation of an odor relative to other odors across concentration has not been extensively evaluated. We tested the ability of honey bees to discriminate pure odorants across a range of concentrations at and above their detection threshold. Our study showed that pure odorant compounds became progressively easier for honey bees to discriminate with increasing concentration. Discrimination is, therefore, a function of odorant concentration. We hypothesize that the recruitment of sensory cell populations across a range of concentrations may be important for odor coding, perhaps by changing its perceptual qualities or by increasing its salience against background stimuli, and that this mechanism is a general property of olfactory systems.  相似文献   
56.
We examined the mechanisms that underlie band-suppression amplitude modulation selectivity in the auditory midbrain of anurans. Band-suppression neurons respond well to low (5–10 Hz) and high (>70 Hz) rates of sinusoidal amplitude modulation, but poorly, if at all, to intermediate rates. The effectiveness of slow rates of sinusoidal amplitude modulation is due to the long duration of individual pulses; short-duration pulses (<10 ms) failed to elicit spikes when presented at 5–10 pulses s–1. Each unit responded only after a threshold number of pulses (median=3, range=2–5) were delivered at an optimal rate. The salient stimulus feature was the number of consecutive interpulse intervals that were within a cell-specific tolerance. This interval-integrating process could be reset by a single long interval, even if preceded by a suprathreshold number of intervals. These findings indicate that band-suppression units are a subset of interval-integrating neurons. Band-suppression neurons differed from band-pass interval-integrating cells in having lower interval-number thresholds and broader interval tolerance. We suggest that these properties increase the probability of a postsynaptic spike, given a particular temporal pattern of afferent action potentials in response to long-duration pulses, i.e., predispose them to respond to slow rates of amplitude modulation. Modeling evidence is provided that supports this conclusion.Abbreviations AM amplitude modulation - PRR pulse repetition rate - SAM sinusoidal amplitude modulation  相似文献   
57.
In various environments where primates are presently observed, as well as in forests and savannas which have been inhabited by australopithecines and early hominids, there are (or there have been presumably) categories of substances eliciting taste signals associated with stereotyped responses. Such is the case for various soluble sugars of fruits and nectars, attracting consumers, and for several plant compounds in which bitter or strongly astringent properties have a repulsive effect. The occurrence of such classes of tasty substances among natural products appears to be related to the evolutionary trends that shaped primate sensory perception (for detecting either beneficent or potentially noxious substances) in the context of a long history of coevolution between animals and plants. Here, we present original psychophysical data on humans (412 individuals aged 17-59 years) as an analogy with which to test recent evidence from electrophysiology in nonhuman primates (Hellekant et al. [1997] J. Neurophysiol. 77:978-993; Danilova et al. [1998] Ann. N.Y. Acad. Sci. 855:160-164) that taste fibers can be grouped into clusters of "best-responding fibers" with two more specific clusters, one for sugars and one for quinine and tannins. The collinearity found between human taste responses (recognition thresholds) for fructose and sucrose, as well as for quinine and tannins, is presented and discussed as another evidence of the two-direction evolutionary trend determining taste sensitivity. Salt perception appears to be totally independent of these trends. Accordingly, the appreciation of a salty taste seems to be a recent culturally learned response, and not a primary taste perception. The very existence of primary tastes is discussed in the context of evolutionary trends, past and present.  相似文献   
58.
Computer programs for eukaryotic gene prediction   总被引:3,自引:0,他引:3  
Seven popular programs for gene prediction in eukaryotic organisms are described and evaluated on the basis of availability for in-house and on-line use and prediction accuracy. This report outlines generally applicable approaches to computational gene prediction and known limitations in this field.  相似文献   
59.
In natural conditions, pheromones released continuously by female moths are broken in discontinuous clumps and filaments. These discontinuities are perceived by flying male moths as periodic variations in the concentration of the stimulus, which have been shown to be essential for location of females. We study analytically and numerically the evolution in time of the activated pheromone-receptor (signaling) complex in response to periodic pulses of pheromone. The 13-reaction model considered takes into account the transport of pheromone molecules by pheromone binding proteins (PBP), their enzymatic deactivation in the perireceptor space and their interaction with receptors at the dendritic membrane of neurons in Antheraea polyphemus sensitive to the main pheromone component. The time-averaged and periodic properties of the temporal evolution of the signaling complex are presented, in both transient and steady states. The same time-averaged response is shown to result from many different pulse trains and to depend hyperbolically on the time-averaged pheromone concentration in air. The dependency of the amplitude of the oscillations of the signaling complex on pulse characteristics, especially frequency, suggests that the model can account for the ability of the studied type of neuron to resolve repetitive pulses up to 2 Hz, as experimentally observed. Modifications of the model for resolving pulses up to 10 Hz, as found in other neuron types sensitive to the minor pheromone components, are discussed.  相似文献   
60.
Noise,not stimulus entropy,determines neural information rate   总被引:1,自引:1,他引:0  
In the quest for deciphering the neural code, theoretical advances were made which allow for the determination of the information rate inherent in the spike trains of nerve cells. However, up to now, the dependence of the information rate on stimulus parameters has not been studied in any neuron in a systematic way. Here, I investigate the information carried by the spike trains of H1, a motion-sensitive visual interneuron of the blowfly (Calliphora vicina) using a moving grating as a stimulus. Stimulus parameters fall in two classes: those that have only a minor effect on the information rate like increasing the frequency bandwidth or the maximum amplitude of the stimulus velocity, and those which dramatically affect the neural information rate, like varying the spatial size or the contrast of the visual pattern being moved. It appears that, for a broad range of complex stimuli, the neuron covers the stimulus with its whole response repertoire regardless of the stimulus entropy, with the information rate being limited by the noise of the stimulus and the neural hardware.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号