首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   19篇
  2017年   7篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   33篇
  2012年   3篇
  2011年   1篇
排序方式: 共有57条查询结果,搜索用时 187 毫秒
41.
Abstract

Glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the pentose phosphate pathway, is indispensable to maintenance of the cytosolic pool of NADPH and thus the cellular redox balance. The role of G6PD as an antioxidant enzyme has been recognized in erythrocytes for a long time, as its deficiency is associated with neonatal jaundice, drug- or infection-mediated hemolytic crisis, favism and, less commonly, chronic non-spherocytic hemolytic anemia. To a large extent, advances in the field were made on the pathophysiology of G6PD-deficient erythrocytes, and the molecular characterization of different G6PD variants. Not until recently did numerous studies cast light on the importance of G6PD in other aspects of the physiology of both cells and organisms. Deficiency in G6PD activity, and hence a disturbance in redox homeostasis, can lead to dysregulation of cell growth and signaling, anomalous embryonic development, altered susceptibility to viral infection as well as increased susceptibility to degenerative diseases. The present review covers recent developments in this field. Additionally, molecular characterization of G6PD variants, especially those frequently found in Taiwan and Southern China, is also addressed.  相似文献   
42.
43.
Procyanidins have been associated with a reduced risk of cardiovascular diseases such as atherosclerosis. However, the molecular mechanisms underlying this benefit are not fully understood. Increased reactive oxygen species (ROS) production generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a common problem in different cardiovascular diseases. Our objective was to evaluate the effects of procyanidin-rich fractions from distilled grape pomace on NADPH oxidase activity in human umbilical vein endothelial cells (HUVEC). Three differently polymerized and galloylated procyanidin fractions were analyzed for their NADPH oxidase inhibitory activity in cell lysates and in HUVEC cultures. All of the three fractions, up to 1 μg/ml, equally inhibited isolated NADPH oxidase in HUVEC lysates in a concentration-dependent manner and independently of any superoxide anion scavenging activities. The procyanidin fractions even blocked NADPH oxidase activity in intact HUVEC, inhibiting ROS production at both extra- and intracellular levels. The fractions achieved the same effects that known NADPH oxidase inhibitors, such as diphenylene iodonium and apocynin, but they presented better hydrosolubility. Our results demonstrated that procyanidin from grape pomace inhibit human endothelial NADPH oxidase regardless of their polymerization degree and galloylation percentage. Therefore, procyanidins are suitable NADPH oxidase inhibitors which could serve as models for therapeutic alternatives for cardiovascular diseases.  相似文献   
44.
45.
Contemporary tissue engineered skeletal muscle models display a high degree of physiological accuracy compared with native tissue, and therefore may be excellent platforms to understand how various pathologies affect skeletal muscle. Chronic obstructive pulmonary disease (COPD) is a lung disease which causes tissue hypoxia and is characterized by muscle fiber atrophy and impaired muscle function. In the present study we exposed engineered skeletal muscle to varying levels of oxygen (O2; 21–1%) for 24 h in order to see if a COPD like muscle phenotype could be recreated in vitro, and if so, at what degree of hypoxia this occurred. Maximal contractile force was attenuated in hypoxia compared to 21% O2; with culture at 5% and 1% O2 causing the most pronounced effects with 62% and 56% decrements in force, respectively. Furthermore at these levels of O2, myotubes within the engineered muscles displayed significant atrophy which was not seen at higher O2 levels. At the molecular level we observed increases in mRNA expression of MuRF‐1 only at 1% O2 whereas MAFbx expression was elevated at 10%, 5%, and 1% O2. In addition, p70S6 kinase phosphorylation (a downstream effector of mTORC1) was reduced when engineered muscle was cultured at 1% O2, with no significant changes seen above this O2 level. Overall, these data suggest that engineered muscle exposed to O2 levels of ≤5% adapts in a manner similar to that seen in COPD patients, and thus may provide a novel model for further understanding muscle wasting associated with tissue hypoxia. J. Cell. Biochem. 118: 2599–2605, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.  相似文献   
46.
47.
48.
49.
Abstract

The photochemical fate of riboflavin (vitamin B2) in the presence of barbituric acid was examined employing polarographic detection of dissolved oxygen and steady-state and time-resolved spectroscopy. Under visible light, riboflavin reacts with barbituric acid – the latter being transparent to this type of photo-irradiation – via radicals and reactive oxygen species, such as singlet molecular oxygen [O2(1Δg)] and superoxide radical anion, which are generated from the excited triplet state of the vitamin. As a result, both the vitamin and barbituric acid are photodegraded. Kinetic and mechanistic studies on the photoreactions of riboflavin in the presence of barbituric acid indicate the excellent quenching ability of the latter towards O2(1Δg).  相似文献   
50.
Abstract

The aim of the present study was to assess the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), monocytic adhesion of human aortic endothelial cells (HAECs), and the production of intracellular reactive oxygen species (ROS), when HAECs were stimulated by 7-ketocholesterol. 7-ketocholesterol enhances surface expression of ICAM-1 and VCAM-1 as determined by EIA, induces their mRNA expression by RT-PCR, and stimulates adhesiveness of HAECs to U937 monocytic cells. We confirmed up-regulation of ROS production of HAECs treated with 7-ketocholesterol. Although the surface expression of ICAM-1 and VCAM-1 on HAECs treated with 7-ketocholesterol increased in a time-dependent manner, α-tocopherol inhibited this increase of the surface expression of ICAM-1 and VCAM-1. In the monocytic adhesion assay, adhesion of U937 to HAECs treated with 7-ketocholesterol was enhanced, but monoclonal anti-ICAM-1 and VCAM-1 antibodies reduced the endothelial adhesiveness. In conclusion, this study suggests that the endothelial adhesiveness to monocytic cells that was increased by 7-ketocholesterol was associated with enhanced expression of ICAM-1 and VCAM-1 mediated by ROS production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号