首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  2019年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   7篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2004年   1篇
  2001年   2篇
  1999年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
11.

Background

Plasma glucose levels are tightly regulated within a narrow physiologic range. Insulin-mediated glucose uptake by tissues must be balanced by the appearance of glucose from nutritional sources, glycogen stores, or gluconeogenesis. In this regard, a common pathway regulating both glucose clearance and appearance has not been described. The metabolism of glucose to produce ATP is generally considered to be the primary stimulus for insulin release from beta-cells. Similarly, gluconeogenesis from phosphoenolpyruvate (PEP) is believed to be the primarily pathway via the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). These models cannot adequately explain the regulation of insulin secretion or gluconeogenesis.

Scope of review

A metabolic sensing pathway involving mitochondrial GTP (mtGTP) and PEP synthesis by the mitochondrial isoform of PEPCK (PEPCK-M) is associated with glucose-stimulated insulin secretion from pancreatic beta-cells. Here we examine whether there is evidence for a similar mtGTP-dependent pathway involved in gluconeogenesis. In both islets and the liver, mtGTP is produced at the substrate level by the enzyme succinyl CoA synthetase (SCS-GTP) with a rate proportional to the TCA cycle. In the beta-cell PEPCK-M then hydrolyzes mtGTP in the production of PEP that, unlike mtGTP, can escape the mitochondria to generate a signal for insulin release. Similarly, PEPCK-M and mtGTP might also provide a significant source of PEP in gluconeogenic tissues for the production of glucose. This review will focus on the possibility that PEPCK-M, as a sensor for TCA cycle flux, is a key mechanism to regulate both insulin secretion and gluconeogenesis suggesting conservation of this biochemical mechanism in regulating multiple aspects of glucose homeostasis. Moreover, we propose that this mechanism may be important for regulating insulin secretion and gluconeogenesis compared to canonical nutrient sensing pathways.

Major conclusions

PEPCK-M, initially believed to be absent in islets, carries a substantial metabolic flux in beta-cells. This flux is intimately involved with the coupling of glucose-stimulated insulin secretion. PEPCK-M activity may have been similarly underestimated in glucose producing tissues and could potentially be an unappreciated but important source of gluconeogenesis.

General significance

The generation of PEP via PEPCK-M may occur via a metabolic sensing pathway important for regulating both insulin secretion and gluconeogenesis. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   
12.
Flaveria pringlei exhibits C3 CO2 compensation concentration (Г) values averaging 53 μl CO2/l at 21% (v/v) O2 and 25 ± 2°C. When this species is hybridized with the C4 species, F. brownii (male) (Г = 6 μl CO2/l), the F1 hybrid plants exhibit an average Г value of 31 μl CO2/l at 21% O2.Although light micrographs of leaf cross-sections show that the leaves of the hybrid plants possess the mesophyll arrangement characteristic of F. pringlei leaves, the hybrid plants have some bundle-sheath chloroplasts. However, the numbers of these organelles do not appear to be intermediate with respect to the numbers in the parents and are closest to the small number present in the bundle-sheath cells of F. pringlei leaves. The activities of key C4 enzymes (in μmol · mg Chl?1 · h?1) are: phosphoenolpyruvate (PEP) carboxylase, 121; pyruvate, orthophosphate (Pi) dikinase, 26; NADP-malate dehydrogenase, 2529; and NADP-malic enzyme, 82. All of these activities are substantially higher than in F. pringlei, but are only 7–10% of those in F. brownii (with the exception of the NADP-malate dehydrogenase activity). These data suggest that a C4 cycle might be operating to a limited extent in the hybrid plants resulting in reduced photorespiration.Whether or not C4 photosynthesis occurs in these hybrid plants, they represent the first reported C3 × C4 F1 hybrids to exhibit reduced Γ-values. This cross and its reciprocal should be useful models for studying the anatomical and biochemical factors determining the development of limited C4 photosynthesis in C3 species.  相似文献   
13.
14.
15.
We show that testicular orphan nuclear receptor 4 (TR4) increases the expression of pyruvate carboxylase (PC) gene in 3T3-L1 adipocytes by direct binding to a TR4 responsive element in the murine PC promoter. While TR4 overexpression increased PC activity, oxaloacetate (OAA) and glycerol levels with enhanced incorporation of 14C from 14C-pyruvate into fatty acids in 3T3-L1 adipocytes, PC knockdown by short interfering RNA (siRNA) or inhibition of PC activity by phenylacetic acid (PAA) abolished TR4-enhanced fatty acid synthesis. Moreover, TR4 microRNA reduced PC expression with decreased fatty acid synthesis in 3T3-L1 adipocytes, suggesting that TR4-mediated enhancement of fatty acid synthesis in adipocytes requires increased expression of PC gene.  相似文献   
16.
Two phosphoenolpyruvate carboxylase (PEPC) kinase genes (PPCk1 and PPCk2) are present in the Arabidopsis genome; only PPCk1 is expressed in rosette leaves. Homozygous lines of two independent PPCk1 T-DNA-insertional mutants showed very little (dln1), or no (csi8) light-induced PEPC phosphorylation and a clear retard in growth under our greenhouse conditions. A mass-spectrometry-based analysis revealed significant changes in metabolite profiles. However, the anaplerotic pathway initiated by PEPC was only moderately altered. These data establish the PPCk1 gene product as responsible for leaf PEPC phosphorylation in planta and show that the absence of PEPC phosphorylation has pleiotropic consequences on plant metabolism.  相似文献   
17.
The embryos of some angiosperm taxa contain chlorophyll and this chlorophyllous stage is persisting until the embryo matures (further referred as chloroembryos). Besides being chlorophyllous, these embryos seem to have the ability to photosynthesize. This suggests that the chlorophyllous state of the embryo has an important role in seed development. The photosynthesis of chloroembryos is highly shade adaptive in nature as it is embedded within the supporting tissues (several layers of pod wall, seed coat and endosperm). Moreover, these chloroembryos are developing in a highly osmotic environment, and contain various components of the photosynthetic machinery. Detailed studies were performed in these chloroembryos in order to elucidate the structure of the chloroplasts, pigment composition, the photochemical activities, the rate of carbon assimilation and also the shade adaptive features. It has been shown that the respired CO2 within these chloroembryos is recycled by the efficient photosynthetic components of the chloroembryos and thus potentially influences the seed's carbon economy. Thus, the major role of embryonic photosynthesis is to produce both energy-rich molecules and oxygen, of which the former can be directly used for biosynthesis. During embryogenesis oxygen production is especially important, in a situation wherein the oxygen is limited within the enclosed seed. As these chloroembryos grow in an environment of a sugar rich endosperm, it requires some adaptive mechanisms in this high osmotic environment. The additional polypeptides found in the thylakoids of chloroembryo chloroplasts in comparison to the thylakoids of leaf chloroplast have been suggested to have a role in protecting the photosynthetic components in the chloroembryos in an environment of high osmotic strength. An attempt to understand osmotic stress tolerance existing in these chloroembryos may lead to a better understanding of tolerance of photosynthesis to osmotic stress.  相似文献   
18.
Cytosolic NAD-dependent malate dehydrogenase (cyMDH) is an enzyme crucial for malate synthesis in the cytosol. The apple MdcyMDH gene (GenBank Accession No. DQ221207) encoding the cyMDH enzyme in apple was cloned and functionally characterized. The protein was subcellularly localized to the cytoplasm and plasma membrane. Based on kinetic parameters, it mainly catalyzes the reaction from oxalacetic acid (OAA) to malate in vitro. The expression level of MdcyMDH was positively correlated with malate dehydrogenase (MDH) activity throughout fruit development, but not with malate content, especially in the ripening apple fruit. MdcyMDH overexpression contributed to malate accumulation in the apple callus and tomato. Taken together, our results support the involvement of MdcyMDH directly in malate synthesis and indirectly in malate accumulation through the regulation of genes/enzymes associated with malate degradation and transportation, gluconeogenesis and the tricarboxylic acid cycle.  相似文献   
19.
Understanding in vivo regulation of photoautotrophic metabolism is important for identifying strategies to improve photosynthetic efficiency or re-route carbon fluxes to desirable end products. We have developed an approach to reconstruct comprehensive flux maps of photoautotrophic metabolism by computational analysis of dynamic isotope labeling measurements and have applied it to determine metabolic pathway fluxes in the cyanobacterium Synechocystis sp. PCC6803. Comparison to a theoretically predicted flux map revealed inefficiencies in photosynthesis due to oxidative pentose phosphate pathway and malic enzyme activity, despite negligible photorespiration. This approach has potential to fill important gaps in our understanding of how carbon and energy flows are systemically regulated in cyanobacteria, plants, and algae.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号