首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1581篇
  免费   103篇
  国内免费   184篇
  2024年   4篇
  2023年   17篇
  2022年   22篇
  2021年   37篇
  2020年   29篇
  2019年   32篇
  2018年   31篇
  2017年   34篇
  2016年   36篇
  2015年   43篇
  2014年   47篇
  2013年   66篇
  2012年   34篇
  2011年   77篇
  2010年   42篇
  2009年   119篇
  2008年   112篇
  2007年   106篇
  2006年   108篇
  2005年   87篇
  2004年   92篇
  2003年   70篇
  2002年   54篇
  2001年   37篇
  2000年   41篇
  1999年   40篇
  1998年   29篇
  1997年   37篇
  1996年   27篇
  1995年   37篇
  1994年   34篇
  1993年   36篇
  1992年   31篇
  1991年   16篇
  1990年   20篇
  1989年   14篇
  1988年   20篇
  1987年   14篇
  1986年   18篇
  1985年   23篇
  1984年   16篇
  1983年   9篇
  1982年   14篇
  1981年   13篇
  1980年   19篇
  1979年   10篇
  1978年   9篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
排序方式: 共有1868条查询结果,搜索用时 15 毫秒
91.
92.
The storage and flux of various mineral and trace elements in soils (0–30cm depth) were examined in relation to monsoonal rains and fine root biomass in four mangrove forests of different age and type in southern Thailand. The onset of the wet SW monsoon resulted in the percolation and dilution of porewater solutes by rainwater and by less saline tidal water, as indicated by shifts in Eh, pH and porewater SO4/Cl ratios. This is contrary to temperate intertidal environments where seasonal patterns of porewater constituents, and biological and biogeochemical activities, are strongly cued to temperature. Fluxes across the soil–water interface were most often not statistically significant. Concentration of dissolved porewater metals were dominated by Fe, Mn, Al, Mo and Zn. The decreasing order of solid-phase element inventories in these soils, on average, was: Al, S, Fe, Na, Mg, K, Ca, N, P, Mn, V, Zn, Cr, Ni, As, Co, Cu, Pb, Mo, Cd and Hg. There were no gradients in concentrations of dissolved or solid-phase elements with increasing soil depth. This phenomenon was attributed to physical and biological processes, including the presence and activities of roots and tidal recharge of soil water. Fine dead roots were storage sites for most mineral and trace elements, as some elements in roots composed a significant fraction (5%) of the total soil pool. Analysis of S and Fe concentration differences between live and dead roots suggested extensive formation of pyrite associated with dead roots; correlation analysis suggested that trace metals coprecipitated with pyrite. An analysis of inventories and release/uptake rates indicate turnover of the N, P, Na and Ca soil pools equivalent to other tropical forests; turnover was slow (decades to centuries) for S, Fe, K and trace elements. Our results indicate that mineral and trace element cycling in these soils are characterized by net storage, with net accumulation of most elements much greater than uptake and release by tree roots.  相似文献   
93.
Merging aquatic and terrestrial perspectives of nutrient biogeochemistry   总被引:8,自引:0,他引:8  
Although biogeochemistry is an integrative discipline, terrestrial and aquatic subdisciplines have developed somewhat independently of each other. Physical and biological differences between aquatic and terrestrial ecosystems explain this history. In both aquatic and terrestrial biogeochemistry, key questions and concepts arise from a focus on nutrient limitation, ecosystem nutrient retention, and controls of nutrient transformations. Current understanding is captured in conceptual models for different ecosystem types, which share some features and diverge in other ways. Distinctiveness of subdisciplines has been appropriate in some respects and has fostered important advances in theory. On the other hand, lack of integration between aquatic and terrestrial biogeochemistry limits our ability to deal with biogeochemical phenomena across large landscapes in which connections between terrestrial and aquatic elements are important. Separation of the two approaches also has not served attempts to scale up or to estimate fluxes from large areas based on plot measurements. Understanding connectivity between the two system types and scaling up biogeochemical information will rely on coupled hydrologic and ecological models, and may be critical for addressing environmental problems associated with locally, regionally, and globally altered biogeochemical cycles.We dedicate this paper to the memory of Catherine Lisa Dent, a member of our working group who contributed much to the ideas presented herein, and to the joy of developing them together.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   
94.
The Alaskan tussock tundra is a strongly nutrient-limited ecosystem, where almost all vascular plant species are mycorrhizal. We established a long-term removal experiment to document effects of arctic plant species on ecto- and ericoid mycorrhizal fungi and to investigate whether species interactions and/or nutrient availability affect mycorrhizal colonization. The treatments applied were removal of Betula nana (Betulaceae, dominant deciduous shrub species), removal of Ledum palustre (Ericaceae, dominant evergreen shrub species), control (no removal), and each of these three treatments with the addition of fertilizer. After 3 years of Ledum removal and fertilization, we found that overall ectomycorrhizal colonization in Betula was significantly reduced. Changes in ectomycorrhizal morphotype composition in removal and fertilized treatments were also observed. These results suggest that the effect of Ledum on Betula 's mycorrhizal roots is due to sequestration of nutrients by Ledum, leading to reduced nutrient availability in the soil. In contrast, ericoid mycorrhizal colonization was not affected by fertilization, but the removal of Betula and to a lower degree of Ledum resulted in a reduction of ericoid mycorrhizal colonization suggesting a direct effect of these species on ericoid mycorrhizal colonization. Nutrient availability was only higher in fertilized treatments, but caution should be taken with the interpretation of these data as soil microbes may effectively compete with the ion exchange resins for the nutrients released by plant removal in these nutrient-limited soils.  相似文献   
95.
96.
Heterotrophic organisms rely on the ingestion of organic molecules or nutrients from the environment to sustain energy and biomass production. Non-motile, unicellular organisms have a limited ability to store nutrients or to take evasive action, and are therefore most directly dependent on the availability of nutrients in their immediate surrounding. Such organisms have evolved numerous developmental options in order to adapt to and to survive the permanently changing nutritional status of the environment. The phenotypical, physiological and molecular nature of nutrient-induced cellular adaptations has been most extensively studied in the yeast Saccharomyces cerevisiae. These studies have revealed a network of sensing mechanisms and of signalling pathways that generate and transmit the information on the nutritional status of the environment to the cellular machinery that implements specific developmental programmes. This review integrates our current knowledge on nutrient sensing and signalling in S. cerevisiae, and suggests how an integrated signalling network may lead to the establishment of a specific developmental programme, namely pseudohyphal differentiation and invasive growth.  相似文献   
97.
A sand culture experiment assessed whether gibberellic acid(GA3) could alleviate the adverse effects of salt stress on thegrowth, ion accumulation and photosynthetic capacity of two spring wheatcultivars, Barani-83 (salt sensitive) and SARC-I (salt tolerant).Three-week-oldplants of both cultivars were exposed to 0, 100 and 200 molm–3 NaCl in Hoagland's nutrient solution. Threeweeks after the initiation of salt treatments, half of the plants of eachcultivar were sprayed overall with 100 mg L–1GA3 solution. Plants were harvested 3 weeks after theapplication of GA3. Fresh and dry weights of shoots and roots, plantheight and leaf area were decreased with increasing supply of salt, butgibberellic acid treatment caused a significant ameliorative effect on both thecultivars with respect to these growth attributes. However, GA3caused no significant change in grain yields but increased grain size in boththe cultivars. Saline growth medium caused a marked increase in theconcentrations of Na+ and Cl in shoots androots of both the lines. However, with the application of GA3accumulation of Na+ and Cl was enhanced inboth shoots and roots of both wheat lines, but more ions accumulated in saltsensitive Barani-83 than in salt tolerant SARC-1. Net CO2assimilation rate (A) of both wheat lines decreased consistently withincreasingsupply of NaCl, but application of GA3 alleviated the effect of saltstress on this variable in both the cultivars. However, the ameliorative effectof the hormone was more pronounced in Barani-83 than in SARC-1. Althoughwater-use efficiency (A/E=CO2assimilation/transpiration) and intrinsic water use efficiency(A/gs=CO2 assimilation/stomatalconductance) decreased significantly with increasing salt concentration of thegrowth medium in both the cultivars, GA3 was more effective inenhancing both the water-use attributes in Barani-83 than in SARC-1. Overall,GA3 treatment stimulated the vegetative growth of both cultivars ofwheat under salt stress, but it caused a slight reduction in grain yield.GA3 treatment enhanced the accumulation of Na+ andCl in both shoots and roots of wheat plants under saltstress.It also caused a significant increase in photosynthetic capacity in both linesat the vegetative stage under both saline and non-saline media.  相似文献   
98.
In order to investigate the possible impacts of increased atmospheric CO2 levels on algal growth and photosynthesis, the influence of CO2 concentration was tested on three planktonic algae (Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Scenedesmus obliquus). Increased CO2 concentration enhanced significantly the growth rate of all three species. Specific growth rates reached maximal values at 30, 100, and 60 M CO2 in C. reinhardtii, C. pyrenoidosa, and S. obliquus, respectively. Such significant enhancement of growth rate with enriched CO2 was also confirmed at different levels of inorganic N and P, being more profound at limiting levels of N inC. pyrenoidosa and P in S. obliquus. The maximal rates of net photosynthesis, photosynthetic efficiency and light-saturating point increased significantly (p < 0.05) in high-CO2-grown cells. Elevation of the CO2 levels in cultures enhanced the photoinhibition of C. reinhardtii, but reduced that of C. pyrenoidosa and S. obliquus when exposed to high photon flux density. The photoinhibited cells recovered to some extent (from 71% to 99%) when placed under dim light or in darkness, with better recovery in high-CO2-grownC. pyrenoidosa and S. obliquus. Although pH and pCO2 effects cannot be distinguished from this study, it can be concluded that increased CO2 concentrations with decreased pH could affect the growth rate and photosynthetic physiology of C. reinhardtii, C. pyrenoidosa, and S. obliquus.  相似文献   
99.
The aim of this study was to establish the possible effects of the sampling protocol (between-breast, within-feed, and diurnal differences) and the mother’s personal factors (age, parity, iron supple-mentation, smoking habits, and lactation period) on the copper, iron, and zinc contents in human milk. One hundred thirty-six human milk samples identified by their origin and sampling conditions were analyzed. The samples were obtained from the 2nd to 15th d postpartum from 62 women. The data on the individuals required for the study were available. Mineral determinations were analyzed by flame atomic absorption spectrometry following a standarized protocol. The results showed that iron contents were higher in hind-milk samples and at the nighttime feeding and depended on the breast from which the sample was taken. The copper and zinc concentrations showed no significant variations. There was no significant relationship among the mothers’ age, parity, smoking habits, iron supplementation, and copper content. Milk from older women had lower zinc contents than that of younger women. Increased amounts of iron were found in multiparous women. Between colostrum and transitional milk, a sharp decrease in zinc content was observed, whereas copper and iron contents remained constant. All of these results make it clear that standardized sampling protocols are needed in order to obtain comparable values.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号