首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2766篇
  免费   22篇
  国内免费   32篇
  2023年   7篇
  2022年   8篇
  2021年   22篇
  2020年   19篇
  2019年   30篇
  2018年   28篇
  2017年   26篇
  2016年   19篇
  2015年   74篇
  2014年   209篇
  2013年   323篇
  2012年   272篇
  2011年   336篇
  2010年   288篇
  2009年   65篇
  2008年   71篇
  2007年   82篇
  2006年   89篇
  2005年   61篇
  2004年   48篇
  2003年   67篇
  2002年   38篇
  2001年   28篇
  2000年   31篇
  1999年   34篇
  1998年   30篇
  1997年   26篇
  1996年   38篇
  1995年   29篇
  1994年   37篇
  1993年   26篇
  1992年   22篇
  1991年   14篇
  1990年   24篇
  1989年   29篇
  1988年   17篇
  1987年   22篇
  1986年   14篇
  1985年   10篇
  1984年   27篇
  1983年   26篇
  1982年   23篇
  1981年   31篇
  1980年   30篇
  1979年   23篇
  1978年   7篇
  1977年   9篇
  1976年   10篇
  1975年   5篇
  1973年   4篇
排序方式: 共有2820条查询结果,搜索用时 15 毫秒
31.
Edward B. Tucker 《Planta》1990,182(1):34-38
The effect of microinjected calcium-loaded 1,2-bis(2-aminophenoxy) ethane-N,N,N,N-tetraacetic acid (CaBAPTA) on cell-to-cell diffusion of carboxyfluorescein (CF) was examined in staminal hairs of S. purpurea Boom. The CaBAPTA was microinjected into the cytoplasm of the staminal hairs either with CF or prior to a subsequent microinjection of CF. The cell-to-cell diffusion of CF along the hair was monitored using enhanced-fluorescence video microscopy. Cytoplasmic streaming stopped in cells treated with CaBAPTA, indicating that intracellular Ca2+ had increased. Cell-to-cell diffusion of CF was blocked in cells treated with Ca-BAPTA. An inhibition of cytoplasmic streaming and cell-to-cell diffusion was observed in the cells adjoining the CaBAPTA-microinjected cell, indicating that the Ca-BAPTA appeared to pass through plasmodesmata. While cytoplasmic streaming resumed 5–10 min after CaBAPTA treatment, cell-to-cell diffusion did not resume until 30–120 min later. These data support an involvement of calcium in the regulation of cell-to-cell communication in plants.Abbreviations BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N, N-tetraacetic acid - CF carboxyfluorescein This work was supported by Professional Staff Congress-City University (PSC-CUNY) of New York grant No. 667180 and U.S. Department of Agriculture grant No. 87-CRCR-1-244.  相似文献   
32.
Creatine Transport in Cultured Cells of Rat and Mouse Brain   总被引:7,自引:3,他引:4  
Astroglia-rich cultures derived from brains of newborn rats or mice use a transport system for the uptake of creatine. The uptake system is saturable, Na+-dependent, and highly specific for creatine and Na+. Kinetic studies on rat cells revealed a Km value for creatine of 45 microM, a Vmax of 17 nmol x h-1 x (mg of protein)-1, and a Km value of 55 mM for Na+. The carrier is competitively inhibited by guanidinopropionate (Ki = 15 microM). No such transport system was found in neuron-rich primary cultures from embryonic rat brain. It is hypothesized that creatine transport is an astroglial rather than a neuronal function.  相似文献   
33.
Summary American eels (Anguilla rostrata) were exposed to acute (30 min) external hypercapnia (1% CO2 or 5% CO2 in air) in order to assess the involvement of circulating catecholamines in regulating red blood cell (RBC) pH and oxygen content during whole blood acidosis. Plasma adrenaline levels increased approximately 5-fold during severe hypercapnia yet absolute levels remained below 1.0 nM; plasma noradrenaline levels were unchanged. Both RBC pH and oxygen bound to haemoglobin ([O2]/[Hb]) conformed to in vitro relationships with whole blood pH (pHe) indicating absence of regulation during hypercapnia in vivo. Pre-treatment of eels with - or -adrenoceptor antagonists, phentolamine or propranolol was without effect on RBC pH or [O2]/[Hb] during hypercapnia. Further, intra-arterial injection of adrenaline (final plasma concentration=134 nM) or noradrenaline (final plasma concentration = 34 nM) into hypercapnic eels 5 min prior to blood sampling did not modify any measured blood variable RBC nucleoside triphosphate (NTP) levels, RBC pH and [O2]/[Hb]. In vitro, the application of adrenaline or noradrenaline to eel RBC's during graded normoxic hypercapnia or hypoxic hypercapnia (noradrenaline only) did not affect RBC pH significantly. RBC NTP levels were depressed by noradrenaline in vitro but only during hypoxic hypercapnia.The results demonstrate adrenergic insensitivity of eel RBC's in vivo even under conditions (acidosis, hypoxemia) known to enhance catecholamine-mediated RBC responses in other species. We conclude that the American eel has no capacity to regulate RBC pH during hypercapnia and consequently [O2]/[Hb] is reduced in accordance with the in vitro Root effect.  相似文献   
34.
Abstract: The mechanism of unidirectional transport of sodium from blood to brain in pentobarbital-anesthetized rats was examined using in situ perfusion. Sodium transport followed Michaelis-Menten saturation kinetics with a V max of 50.1 nmol/g/min and a K m of 17.7 m M in the left frontal cortex. The kinetic analysis indicated that, at a physiologic sodium concentration, ∼26% of sodium transport at the blood-brain barrier (BBB) was carrier mediated. Dimethylamiloride (25 µ M ), an inhibitor of Na+/H+ exchange, reduced sodium transport by 28%, whereas phenamil (25 µ M ), a sodium channel inhibitor, reduced the transfer constant for sodium by 22%. Bumetanide (250 µ M ) and hydrochlorothiazide (1.5 m M ), inhibitors of Na+-K+-2Cl/NaCl symport, were ineffective in reducing blood to brain sodium transport. Acetazolamide (0.25 m M ), an inhibitor of carbonic anhydrase, did not change sodium transport at the BBB. Finally, a perfusate pH of 7.0 or 7.8 or a perfusate P co 2 of 86 mm Hg failed to change sodium transport. These results indicate that 50% of transcellular transport of sodium from blood to brain occurs through Na+/H+ exchange and a sodium channel in the luminal membrane of the BBB. We propose that the sodium transport systems at the luminal membrane of the BBB, in conjunction with Cl/HCO3 exchange, lead to net NaCl secretion and obligate water transport into the brain.  相似文献   
35.
Abstract: The kinetic characteristics of [3H]adenosine uptake, the extent to which accumulated [3H]adenosine was metabolized, the effects such metabolism had on measurements of apparent Michaelis-Menten kinetic values of KT and Vmax, and the sensitivities with which nucleoside transport inhibitors blocked [3H]adenosine accumulations were determined in cultured human fetal astrocytes. KT and Vmax values for accumulations of [3H]-labeled purines using 15-s incubations in the absence of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and the adenosine kinase inhibitor 5′-iodotubercidin (ITU) were 6.2 µM and 0.15 nmol/min/mg of protein for the high-affinity and 2.6 mM and 21 nmol/min/mg of protein for the low-affinity components respectively. In the presence of EHNA and ITU, where <4% of accumulated [3H]adenosine was metabolized, transport per se was measured, and kinetic values for KT and Vmax were 179 µM and 5.2 nmol/min/mg of protein, respectively. In the absence of EHNA and ITU, accumulated [3H]adenosine was rapidly metabolized to AMP, ADP, and ATP, and caused an appearance of “concentrative” uptake in that the intracellular levels of [3H]-labeled purines (adenosine plus its metabolites) were 1.4-fold higher than in the medium. No apparent concentrative accumulations of [3H]adenosine were found when assays were conducted using short incubation times in the absence or presence of EHNA and ITU. The nucleoside transport inhibitors dipyridamole (DPR), nitrobenzylthioinosine (NBI), and dilazep biphasically inhibited [3H]adenosine transport; for the inhibitor-sensitive components the IC50 values were 0.7 nM for NBI, 1.3 nM for DPR, and 3.3 nM for dilazep, and for the inhibitor-resistant component the IC50 values were 2.5 µM for NBI, 5.1 µM for dilazep, and 39.0 µM for DPR. These findings, in cultured human fetal astrocytes, represent the first demonstration of inhibitor-sensitive and -resistant adenosine transporters in nontransformed human cells.  相似文献   
36.
Abstract: The Na+-glutamate cotransporters are believed to countertransport OH? and K+. Previous evidence that the velocity of glutamate uptake can exceed the acid extrusion capacity of astrocytes raised the question of whether intracellular pH can become rate limiting for glutamate uptake. Cytoplasmic buffering capacity and acid extrusion in astrocytes are partially HCO3? dependent. Also, it was reported recently that raising extracellular [K+] alkalinizes astrocyte cytoplasm by an HCO3?-dependent mechanism. Here, we have compared glutamate uptake in HCO3?-buffered and HCO3?-depleted solutions at varying [K+]. We observed a pronounced stimulation of glutamate uptake by extracellular K+ (3–24 mM) that was substantially HCO3? dependent and affected preferentially the uptake of high concentrations (>25 µM) of glutamate. Stimulation of uptake by low extracellular [K+] (1.5–3 mM) was less dependent on HCO3?. Potassium-induced stimulation of uptake was weaker in rat astrocyte cultures than in mouse. The effects of Ba2+ and amiloride on glutamate uptake, as well as the HCO3?-dependent stimulatory effects of K+ and the species difference, all related consistently to effects on intracellular pH. The effects on uptake, however, were much larger than predicted by the associated changes in electrochemical gradient of OH?. A “bimodal” scheme for glutamate transport can account qualitatively for the observed correlation between intracellular pH and velocity of glutamate uptake.  相似文献   
37.
Abstract: Characteristics of the transport of the nitric oxide synthase substrate l -arginine and its inhibitor, N G-nitro- l -arginine ( l -NOARG), into rat cerebellar synaptosomes were studied. Uptake of both l -arginine and l -NOARG was linear with increasing amount of protein (up to 40 µg) and time of incubation (up to 5 min) at 37°C. Uptake of both compounds reached a steady state by 20 min. Maximal uptake of l -NOARG (650 pmol/mg of protein) was three to four times higher than that of l -arginine (170 pmol/mg of protein). l -NOARG uptake showed biphasic kinetics ( K m 1 = 0.72 m M , V max 1 = 0.98 nmol/min/mg of protein; K m 2 = 2.57 m M , V max 2 = 16.25 nmol/min/mg of protein). l -Arginine uptake was monophasic with a K m of 106 µ M and a V max of 0.33 nmol/min/mg of protein. l -NOARG uptake was selectively inhibited by l -NOARG, N G-nitro- l -arginine methyl ester, and branched-chain and aromatic amino acids. l -Alanine and l -serine also inhibited l -NOARG uptake but with less potency. Uptake of l -arginine was selectively inhibited by N G-monomethyl- l -arginine acetate and basic amino acids. These studies suggest that in rat cerebellar synaptosomes, l -NOARG is transported by the neutral amino acid carrier systems T and L with high affinity, whereas l -arginine is transported by the basic amino acid carrier system y+ with high affinity. These data indicate that the concentration of competing amino acids is an important factor in determining the rates of uptake of l -NOARG and l -arginine into synaptosomes and, in this way, may control the activity of nitric oxide synthase.  相似文献   
38.
Abstract: The carboxy-terminal cytoplasmic regions of the rat neurokinin 1 (substance P) and neurokinin 2 (neurokinin A) receptors have been exchanged to determine if this region of the neurokinin 1 receptor is involved in its desensitization. When expressed at similar levels in stably transfected Chinese hamster ovary (CHO) cell lines, receptors containing the carboxy-terminal region of the neurokinin 1 receptor desensitized significantly more (as measured by reduction of the inositol 1,4,5-trisphosphate response) when preexposed for 1 min to 1 µ M neurokinin, indicating a role for the carboxy-terminal region of the neurokinin 1 receptor in its desensitization. Measurement of receptor internalization using radiolabeled neurokinins (0.3 n M ) indicated that ∼75–80% of the receptors were internalized in each cell line after 10 min at 37°C, with no observable correlation between neurokinin receptor desensitization and internalization. Measurement of loss of receptor surface sites for cell lines CHO NK1 and CHO NK1NK2 following exposure to 1 µ M substance P also indicated no obvious relationship between the percent desensitization and percent of receptors internalized. Also, two inhibitors of neurokinin 1 receptor internalization, phenylarsine oxide and hyperosmolar sucrose, did not inhibit neurokinin 1 receptor desensitization. The protein kinase inhibitors Ro 31-8220, staurosporine, and Zn2+ had no effect on neurokinin 1 receptor desensitization, indicating that the kinases affected by these agents are not rate-limiting in neurokinin 1 receptor desensitization in this system.  相似文献   
39.
Abstract: C6 glioma cells were used as a model system to study the regulation of EAAC1-mediated Na+-dependent l -[3H]glutamate transport. Although a 30-min preincubation with forskolin had no effect on transport activity, preincubation with phorbol 12-myristate 13-acetate (PMA) increased transport activity two- to threefold. PMA caused a time-dependent and concentration-dependent increase in EAAC1-mediated l -[3H]glutamate transport activity. A 2-min preincubation with PMA was sufficient to cause more than a twofold increase in transport activity and the protein synthesis inhibitor cycloheximide had no effect on the increase. These data suggest that this increase is independent of protein synthesis. The EC50 value of PMA for stimulation of transport activity was 80 nM. Kinetic analyses demonstrated that the increase in transport activity was due to a 2.5-fold increase in Vmax with no change in Km. PMA also increased the transport of the nonmetabolizable analogue, d -[3H]aspartate to the same extent. In parallel assays, PMA did not, however, increase Na+-dependent glycine transport activity in C6 glioma. The inactive phorbol ester 4α-phorbol 12,13-didecanoate, did not stimulate l -[3H]glutamate transport activity, and the protein kinase C inhibitor chelerythrine blocked the stimulation caused by PMA. Okadaic acid and cyclosporin A, which are phosphatase inhibitors, had no effect on the stimulation of transport activity caused by PMA. The Ca2+ ionophore A23187 did not act synergistically to increase PMA stimulation. In previous studies, PMA caused a rapid increase in amiloride-sensitive Na+/H+ transport activity in C6 glioma. In the present study, pre- and coincubation with amiloride had no effect on the stimulation of transport activity caused by PMA. These studies suggest that activation of protein kinase C causes a rapid increase in EAAC1-mediated transport activity. This rapid increase in Na+-dependent l -[3H]-glutamate transport activity may provide a novel mechanism for protection against acute insults to the CNS.  相似文献   
40.
The quantitative content of three transport systems for aromatic amino acids in cells of Halobacterium salinarium was measured: the common system (K m is about 10-6 M) and two tyrosine-specific systems with high and low affinity (K m is about 10-8 and 10-5 M, respectively). To determine the activity of each of three systems separately, a method was developed based on the selective phenylalanine effect on these activities. When phenylalanine exeeds [14C]tyrosine by four to sixforld, it inhibits competitively the activity of the common system, and its 50- to 100-fold molar excess is inhibitory in a non-competitive way for the specific high affinity system (HAT system). The specific low affinity system (LAT system) is practically insensitive to phenylalanine. The activities of tyrosine-specific transport systems are slightly dependent on the culture age, and the observed decrease in transport activity during growth is due mainly to the decreased content of the common system. The HAT system formation is regulated by the repression type, and the effectors are aromatic amino acids especially tyrosine itself. The physiological sense of the tyrosine transport system's multiplicity in H. salinarium is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号