首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2768篇
  免费   22篇
  国内免费   32篇
  2822篇
  2023年   9篇
  2022年   8篇
  2021年   22篇
  2020年   19篇
  2019年   30篇
  2018年   28篇
  2017年   26篇
  2016年   19篇
  2015年   74篇
  2014年   209篇
  2013年   323篇
  2012年   272篇
  2011年   336篇
  2010年   288篇
  2009年   65篇
  2008年   71篇
  2007年   82篇
  2006年   89篇
  2005年   61篇
  2004年   48篇
  2003年   67篇
  2002年   38篇
  2001年   28篇
  2000年   31篇
  1999年   34篇
  1998年   30篇
  1997年   26篇
  1996年   38篇
  1995年   29篇
  1994年   37篇
  1993年   26篇
  1992年   22篇
  1991年   14篇
  1990年   24篇
  1989年   29篇
  1988年   17篇
  1987年   22篇
  1986年   14篇
  1985年   10篇
  1984年   27篇
  1983年   26篇
  1982年   23篇
  1981年   31篇
  1980年   30篇
  1979年   23篇
  1978年   7篇
  1977年   9篇
  1976年   10篇
  1975年   5篇
  1973年   4篇
排序方式: 共有2822条查询结果,搜索用时 12 毫秒
141.
Renal excretion of citrate, an inhibitor of calcium stone formation, is controlled mainly by reabsorption via the apical Na+-dicarboxylate cotransporter NaDC1 (SLC13A2) in the proximal tubule. Recently, it has been shown that the protein phosphatase calcineurin inhibitors cyclosporin A (CsA) and FK-506 induce hypocitraturia, a risk factor for nephrolithiasis in kidney transplant patients, but apparently through urine acidification. This suggests that these agents up-regulate NaDC1 activity. Using the Xenopus lævis oocyte and HEK293 cell expression systems, we examined first the effect of both anti-calcineurins on NaDC1 activity and expression. While FK-506 had no effect, CsA reduced NaDC1-mediated citrate transport by lowering heterologous carrier expression (as well as endogenous carrier expression in HEK293 cells), indicating that calcineurin is not involved. Given that CsA also binds specifically to cyclophilins, we determined next whether such proteins could account for the observed changes by examining the effect of selected cyclophilin wild types and mutants on NaDC1 activity and cyclophilin-specific siRNA. Interestingly, our data show that the cyclophilin isoform B is likely responsible for down-regulation of carrier expression by CsA and that it does so via its chaperone activity on NaDC1 (by direct interaction) rather than its rotamase activity. We have thus identified for the first time a regulatory partner for NaDC1, and have gained novel mechanistic insight into the effect of CsA on renal citrate transport and kidney stone disease, as well as into the regulation of membrane transporters in general.  相似文献   
142.
This study proposed an indicator system for measuring and monitoring transport sustainability at the county (or city) level. Twenty-one indicators were grouped into economy, environment, society, and energy aspects. A committee comprised of government officials from Taipei City and New Taipei City proposed transport solutions to improve the transport sustainability of the Taipei metropolitan area. Ten key indicators were selected to measure the sustainable transport strategies. This study applied Fuzzy Cognitive Maps (FCMs) and the Analytic Hierarchy Process (AHP) to construct the cause–effect relationships between these key indicators and to evaluate sustainable transport strategies. The evaluation results showed that the strategy of expanding mass rapid transit (MRT) lines was predicted to produce the most significant improvements; the strategy of integrating bus exclusive lanes would provide the least improvement; and the strategies of promoting cleaner vehicles and integrating Fu-Kang bus resources would perform similarly to each other in improving transport sustainability.  相似文献   
143.
Recently, unusual non-regulated ATP-dependent 6-phosphofructokinases (PFK) that belong to the PFK-B family have been described for the hyperthermophilic archaea Desulfurococcus amylolyticus and Aeropyrum pernix. Putative homologues were found in genomes of several archaea including the hyperthermophilic archaeon Methanocaldococcus jannaschii. In this organism, open reading frame MJ0406 had been annotated as a PFK-B sugar kinase. The gene encoding MJ0406 was cloned and functionally expressed in Escherichia coli. The purified recombinant enzyme is a homodimer with an apparent molecular mass of 68 kDa composed of 34 kDa subunits. With a temperature optimum of 85°C and a melting temperature of 90°C, the M. jannaschii nucleotide kinase represents one of the most thermoactive and thermostable members of the PFK-B family described so far. The recombinant enzyme was characterized as a functional nucleoside kinase rather than a 6-PFK. Inosine, guanosine, and cytidine were the most effective phosphoryl acceptors. Besides, adenosine, thymidine, uridin and xanthosine were less efficient. Extremely low activity was found with fructose-6-phosphate. Further, the substrate specificity of closely related PFK-Bs from D. amylolyticus and A. pernix were reanalysed.  相似文献   
144.
The exciton transfer between light-harvesting complex 1(LH1) and photosynthetic reaction center dimer is investigated theoretically. We assume a ring shape structure of the LH1 complex with dimer in the ring centre. The kinetic equations which describe the energy transfer between the antenna complex and reaction center dimer were derived. It was shown that the dimer does not act as a photon trap. There is a weak localization of the exciton on the dimer and there is relatively rapid back exciton transfer from dimer to antenna complex which depends on the number of the pigment molecules in the antenna ring. The relation between the rates of the exciton transfer from the antenna complex to dimer and back transfer from dimer to antenna complex has been derived.  相似文献   
145.
146.
Stangoulis JC  Reid RJ  Brown PH  Graham RD 《Planta》2001,213(1):142-146
The permeability of biological membranes to boric acid was investigated using the giant internodal cells of the charophyte alga Chara corallina (Klein ex Will. Esk. R.D. Wood). The advantage of this system is that it is possible to distinguish between membrane transport of boron (B) and complexing of B by plant cell walls. Influx of B was found to be rapid, with equilibrium between the intracellular and extracellular phases being established after approximately 24 h when the external concentration was 50 μM. The intracellular concentration at equilibrium was 55 μM, which is consistent with passive distribution of B across the membrane along with a small amount of internal complexation. Efflux of B occurred with a similar half-time to influx, approximately 3 h, which indicates that the intracellular B was not tightly complexed. The concentration dependence of short-term influx measured with 10B-enriched boric acid was biphasic. This was tentatively attributed to the operation of two separate transport systems, a facilitated system that saturates at 5 μM, and a linear component due to simple diffusion of B through the membrane. V max and K m for the facilitated transport system were 135 pmol m−2 s−1 and 2 μM, respectively. The permeability coefficient for boric acid in the Chara plasmalemma estimated from the slope of the linear influx component was 4.4 × 10−7 cm s−1 which is an order of magnitude lower than computed from the ether:water partition coefficient for B. Received: 14 August 2000 / Accepted: 16 September 2000  相似文献   
147.
Over a decade ago, genetic studies identified a family of small integral membrane proteins, commonly referred to as copper transporters (CTRs) that are both required and sufficient for cellular copper uptake in a yeast genetic complementation assay. We recently used electron crystallography to determine a projection density map of the human high affinity transporter hCTR1 embedded into a lipid bilayer. At 6 Å resolution, this first glimpse of the structure revealed that hCTR1 is trimeric and possesses the type of radial symmetry that traditionally has been associated with the structure of certain ion channels such as potassium or gap junction channels. Representative for this particular type of architecture, a region of low protein density at the center of the trimer is consistent with the existence of a copper permeable pore along the center three-fold axis of the trimer. In this contribution, we will briefly discuss how recent structure–function studies correlate with the projection density map, and provide a perspective with respect to the cellular uptake of other transition metals.  相似文献   
148.
The ion-driven membrane rotors of ATP synthases consist of multiple copies of subunit c, forming a closed ring. Subunit c typically comprises two transmembrane helices, and the c ring features an ion-binding site in between each pair of adjacent subunits. Here, we use experimental and computational methods to study the structure and specificity of an archaeal c subunit more akin to those of V-type ATPases, namely that from Pyrococcus furiosus. The c subunit was purified by chloroform/methanol extraction and determined to be 15.8 kDa with four predicted transmembrane helices. However, labeling with DCCD as well as Na+-DCCD competition experiments revealed only one binding site for DCCD and Na+, indicating that the mature c subunit of this A1AO ATP synthase is indeed of the V-type. A structural model generated computationally revealed one Na+-binding site within each of the c subunits, mediated by a conserved glutamate side chain alongside other coordinating groups. An intriguing second glutamate located in-between adjacent c subunits was ruled out as a functional Na+-binding site. Molecular dynamics simulations indicate that the c ring of P. furiosus is highly Na+-specific under in vivo conditions, comparable with the Na+-dependent V1VO ATPase from Enterococcus hirae. Interestingly, the same holds true for the c ring from the methanogenic archaeon Methanobrevibacter ruminantium, whose c subunits also feature a V-type architecture but carry two Na+-binding sites instead. These findings are discussed in light of their physiological relevance and with respect to the mode of ion coupling in A1AO ATP synthases.  相似文献   
149.
Nucleoside transporters have a variety of functions in the cell, such as the provision of substrates for nucleic acid synthesis and the modulation of purine receptors by determining agonist availability. They also transport a wide range of nucleoside-derived antiviral and anticancer drugs. Most mammalian cells coexpress several nucleoside transporter isoforms at the plasma membrane, which are differentially regulated. This paper reviews studies on nucleoside transporter regulation, which has been extensively characterized in the laboratory in several model systems: the hepatocyte, an epithelial cell type, and immune system cells, in particular B cells, which are non-polarized and highly specialized. The hepatocyte co-expresses at least two Na+-dependent nucleoside transporters, CNT1 and CNT2, which are up-regulated during cell proliferation but may undergo selective loss in certain experimental models of hepatocarcinomas. This feature is consistent with evidence that CNT expression also depends on the differentiation status of the hepatocyte. Moreover, substrate availability also modulates CNT expression in epithelial cells, as reported for hepatocytes and jejunum epithelia from rats fed nucleotide-deprived diets. In human B cell lines, CNT and ENT transporters are co-expressed but differentially regulated after B cell activation triggered by cytokines or phorbol esters, as described for murine bone marrow macrophages induced either to activate or to proliferate. The complex regulation of the expression and activity of nucleoside transporters hints at their relevance in cell physiology.  相似文献   
150.
The evolutionarily broad family nucleobase-cation symporter-2 (NCS2) encompasses transporters that are conserved in binding site architecture but diverse in substrate selectivity. Putative purine transporters of this family fall into one of two homology clusters: COG2233, represented by well studied xanthine and/or uric acid permeases, and COG2252, consisting of transporters for adenine, guanine, and/or hypoxanthine that remain unknown with respect to structure-function relationships. We analyzed the COG2252 genes of Escherichia coli K-12 with homology modeling, functional overexpression, and mutagenesis and showed that they encode high affinity permeases for the uptake of adenine (PurP and YicO) or guanine and hypoxanthine (YjcD and YgfQ). The two pairs of paralogs differ clearly in their substrate and ligand preferences. Of 25 putative inhibitors tested, PurP and YicO recognize with low micromolar affinity N6-benzoyladenine, 2,6-diaminopurine, and purine, whereas YjcD and YgfQ recognize 1-methylguanine, 8-azaguanine, 6-thioguanine, and 6-mercaptopurine and do not recognize any of the PurP ligands. Furthermore, the permeases PurP and YjcD were subjected to site-directed mutagenesis at highly conserved sites of transmembrane segments 1, 3, 8, 9, and 10, which have been studied also in COG2233 homologs. Residues irreplaceable for uptake activity or crucial for substrate selectivity were found at positions occupied by similar role amino acids in the Escherichia coli xanthine- and uric acid-transporting homologs (XanQ and UacT, respectively) and predicted to be at or around the binding site. Our results support the contention that the distantly related transporters of COG2233 and COG2252 use topologically similar side chain determinants to dictate their function and the distinct purine selectivity profiles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号