首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2766篇
  免费   22篇
  国内免费   32篇
  2023年   7篇
  2022年   8篇
  2021年   22篇
  2020年   19篇
  2019年   30篇
  2018年   28篇
  2017年   26篇
  2016年   19篇
  2015年   74篇
  2014年   209篇
  2013年   323篇
  2012年   272篇
  2011年   336篇
  2010年   288篇
  2009年   65篇
  2008年   71篇
  2007年   82篇
  2006年   89篇
  2005年   61篇
  2004年   48篇
  2003年   67篇
  2002年   38篇
  2001年   28篇
  2000年   31篇
  1999年   34篇
  1998年   30篇
  1997年   26篇
  1996年   38篇
  1995年   29篇
  1994年   37篇
  1993年   26篇
  1992年   22篇
  1991年   14篇
  1990年   24篇
  1989年   29篇
  1988年   17篇
  1987年   22篇
  1986年   14篇
  1985年   10篇
  1984年   27篇
  1983年   26篇
  1982年   23篇
  1981年   31篇
  1980年   30篇
  1979年   23篇
  1978年   7篇
  1977年   9篇
  1976年   10篇
  1975年   5篇
  1973年   4篇
排序方式: 共有2820条查询结果,搜索用时 159 毫秒
101.
The pathogen Staphylococcus aureus causes a wide range of serious infections, necessitating urgent development of a vaccine against this organism. However, currently developed vaccines are relatively ineffective because of the limited antigenic component that is contained in the vaccine formulations. To develop an effective S. aureus candidate vaccine, overlapping PCR was used to add the truncated immunodominant antigen iron‐regulated surface determinant B (IsdB)(N126–P361) (tIsdB) to the N‐terminal of intact antigen target of RNAIII activating protein (TRAP) and thus construct a tIsdB‐TRAP chimera. The humoral and cellular immune responses against tIsdB‐TRAP were compared with those against single or combined formulations. tIsdB‐TRAP elicited significantly stronger humoral responses in mice (P < 0.05). As to cellular immune responses in mice, the tIsdB‐TRAP group resulted in a greater IL‐4 response than did other groups (P < 0.05). Greater amounts of IL‐2 and IFN‐γ were found in the tIsdB‐TRAP group. Mouse challenge also showed that tIsdB‐TRAP provided better protection against S. aureus than did the control groups. These results suggest that this chimeric protein may be a promising pathogen target for further vaccine development.  相似文献   
102.
We present the results of molecular dynamics (MD) computer simulations of rare gas diffusion through breathable nanotubes with pentagon–heptagon pair defects resulting in constrictions and knees. Diffusion involves interrupted high speed “choppy” motion with intermittent reversal in velocity direction. Single atoms exhibit a spiral-like path, in contrast to atoms traveling in groups. Considerable resistance to flow appears to reside in the upstream section of the nanotube where density gradients are small, prior to the constriction. Subsequently, considerable density gradients are present and speeds increase, becoming greatest at the tube exit. For the nanotubes examined, Kr and Xe diffusion was too hindered to provide reliable results. Diffusion of He through the nanotubes with knees occurs in a single-file fashion nearly along the center of the tube and the knee has no detectable effect on the diffusion kinetics. Transport diffusion coefficients are in the order of 10-4–10-2?cm2/s.  相似文献   
103.
Huntington disease is a dominantly inherited neurodegenerative condition caused by polyglutamine expansion in the N terminus of the huntingtin protein (Htt). The first 17 amino acids (N17) of Htt play a key role in regulating its toxicity and aggregation. Both nuclear export and cytoplasm retention functions have been ascribed to N17. We have determined that N17 acts as a nuclear export sequence (NES) within Htt exon and when fused to yellow fluorescent protein. We have defined amino acids within N17 that constitute the nuclear export sequence (NES). Mutation of any of the conserved residues increases nuclear accumulation of Htt exon 1. Nuclear export of Htt is sensitive to leptomycin B and is reduced by knockdown of exportin 1. In HEK293 cells, NES mutations decrease overall Htt aggregation but increase the fraction of cells with nuclear inclusions. In primary cultured neurons, NES mutations increase nuclear accumulation and increase overall aggregation. This work defines a bona fide nuclear export sequence within N17 and links it to effects on protein aggregation. This may help explain the important role of N17 in controlling Htt toxicity.  相似文献   
104.
Cholera toxin causes diarrheal disease by binding ganglioside GM1 on the apical membrane of polarized intestinal epithelial cells and trafficking retrograde through sorting endosomes, the trans-Golgi network (TGN), and into the endoplasmic reticulum. A fraction of toxin also moves from endosomes across the cell to the basolateral plasma membrane by transcytosis, thus breeching the intestinal barrier. Here we find that sorting of cholera toxin into this transcytotic pathway bypasses retrograde transport to the TGN. We also find that GM1 sphingolipids can traffic from apical to basolateral membranes by transcytosis in the absence of toxin binding but only if the GM1 species contain cis-unsaturated or short acyl chains in the ceramide domain. We found previously that the same GM1 species are needed to efficiently traffic retrograde into the TGN and endoplasmic reticulum and into the recycling endosome, implicating a shared mechanism of action for sorting by lipid shape among these pathways.  相似文献   
105.
The serotonin transporter (SERT) maintains serotonergic neurotransmission via rapid reuptake of serotonin from the synaptic cleft. SERT relies exclusively on the coat protein complex II component SEC24C for endoplasmic reticulum (ER) export. The closely related transporters for noradrenaline and dopamine depend on SEC24D. Here, we show that discrimination between SEC24C and SEC24D is specified by the residue at position +2 downstream from the ER export motif (607RI608 in SERT). Substituting Lys610 with tyrosine, the corresponding residue found in the noradrenaline and dopamine transporters, switched the SEC24 isoform preference: SERT-K610Y relied solely on SEC24D to reach the cell surface. This analysis was extended to other SLC6 (solute carrier 6) transporter family members: siRNA-dependent depletion of SEC24C, but not of SEC24D, reduced surface levels of the glycine transporter-1a, the betaine/GABA transporter and the GABA transporter-4. Experiments with dominant negative versions of SEC24C and SEC24D recapitulated these findings. We also verified that the presence of two ER export motifs (in concatemers of SERT and GABA transporter-1) supported recruitment of both SEC24C and SEC24D. To the best of our knowledge, this is the first report to document a change in SEC24 specificity by mutation of a single residue in the client protein. Our observations allowed for deducing a rule for SLC6 family members: a hydrophobic residue (Tyr or Val) in the +2 position specifies interaction with SEC24D, and a hydrophilic residue (Lys, Asn, or Gln) recruits SEC24C. Variations in SEC24C are linked to neuropsychiatric disorders. The present findings provide a mechanistic explanation. Variations in SEC24C may translate into distinct surface levels of neurotransmitter transporters.  相似文献   
106.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2.  相似文献   
107.
Type IV P-type ATPases (P4-ATPases) and CDC50 family proteins form a putative phospholipid flippase complex that mediates the translocation of aminophospholipids such as phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the outer to inner leaflets of the plasma membrane. In Chinese hamster ovary (CHO) cells, at least eight members of P4-ATPases were identified, but only a single CDC50 family protein, CDC50A, was expressed. We demonstrated that CDC50A associated with and recruited P4-ATPase ATP8A1 to the plasma membrane. Overexpression of CDC50A induced extensive cell spreading and greatly enhanced cell migration. Depletion of either CDC50A or ATP8A1 caused a severe defect in the formation of membrane ruffles, thereby inhibiting cell migration. Analyses of phospholipid translocation at the plasma membrane revealed that the depletion of CDC50A inhibited the inward translocation of both PS and PE, whereas the depletion of ATP8A1 inhibited the translocation of PE but not that of PS, suggesting that the inward translocation of cell-surface PE is involved in cell migration. This hypothesis was further examined by using a PE-binding peptide and a mutant cell line with defective PE synthesis; either cell-surface immobilization of PE by the PE-binding peptide or reduction in the cell-surface content of PE inhibited the formation of membrane ruffles, causing a severe defect in cell migration. These results indicate that the phospholipid flippase complex of ATP8A1 and CDC50A plays a major role in cell migration and suggest that the flippase-mediated translocation of PE at the plasma membrane is involved in the formation of membrane ruffles to promote cell migration.  相似文献   
108.
The sulfonylurea receptor 1 (Sur1)-NCCa-ATP channel plays a central role in necrotic cell death in central nervous system (CNS) injury, including ischemic stroke, and traumatic brain and spinal cord injury. Here, we show that Sur1-NCCa-ATP channels are formed by co-assembly of Sur1 and transient receptor potential melastatin 4 (Trpm4). Co-expression of Sur1 and Trpm4 yielded Sur1-Trpm4 heteromers, as shown in experiments with Förster resonance energy transfer (FRET) and co-immunoprecipitation. Co-expression of Sur1 and Trpm4 also yielded functional Sur1-Trpm4 channels with biophysical properties of Trpm4 and pharmacological properties of Sur1. Co-assembly with Sur1 doubled the affinity of Trpm4 for calmodulin and doubled its sensitivity to intracellular calcium. Experiments with FRET and co-immunoprecipitation showed de novo appearance of Sur1-Trpm4 heteromers after spinal cord injury in rats. Our findings depart from the long-held view of an exclusive association between Sur1 and KATP channels and reveal an unexpected molecular partnership with far-ranging implications for CNS injury.  相似文献   
109.
The dominant glutamate transporter isoform in the mammalian brain, GLT1, exists as at least three splice variants, GLT1a, GLT1b, and GLT1c. GLT1b interacts with the scaffold protein PICK1 (protein interacting with kinase C1), which is implicated in glutamatergic neurotransmission via its regulatory effect on trafficking of AMPA-type glutamate receptors. The 11 extreme C-terminal residues specific for the GLT1b variant are essential for its specific interaction with the PICK1 PDZ domain, but a functional consequence of this interaction has remained unresolved. To identify a functional effect of PICK1 on GLT1a or GLT1b separately, we employed the Xenopus laevis expression system. GLT1a and GLT1b displayed similar electrophysiological properties and EC50 for glutamate. Co-expressed PICK1 localized efficiently to the plasma membrane and resulted in a 5-fold enhancement of the leak current in GLT1b-expressing oocytes with only a minor effect on [3H]glutamate uptake. Three different GLT1 substrates all caused a slow TBOA-sensitive decay in the membrane current upon prolonged application, which provides support for the leak current being mediated by GLT1b itself. Leak and glutamate-evoked currents in GLT1a-expressing oocytes were unaffected by PICK1 co-expression. PKC activation down-regulated GLT1a and GLT1b activity to a similar extent, which was not affected by co-expression of PICK1. In conclusion, PICK1 may not only affect glutamatergic neurotransmission by its regulatory effect on glutamate receptors but may also affect neuronal excitability via an increased GLT1b-mediated leak current. This may be particularly relevant in pathological conditions such as amyotrophic lateral sclerosis and cerebral hypoxia, which are associated with neuronal GLT1b up-regulation.  相似文献   
110.
The fungal ATP-binding cassette (ABC) transporter Cdr1 protein (Cdr1p), responsible for clinically significant drug resistance, is composed of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). We have probed the nature of the drug binding pocket by performing systematic mutagenesis of the primary sequences of the 12 transmembrane segments (TMSs) found in the TMDs. All mutated proteins were expressed equally well and localized properly at the plasma membrane in the heterologous host Saccharomyces cerevisiae, but some variants differed significantly in efflux activity, substrate specificity, and coupled ATPase activity. Replacement of the majority of the amino acid residues with alanine or glycine yielded neutral mutations, but about 42% of the variants lost resistance to drug efflux substrates completely or selectively. A predicted three-dimensional homology model shows that all the TMSs, apart from TMS4 and TMS10, interact directly with the drug-binding cavity in both the open and closed Cdr1p conformations. However, TMS4 and TMS10 mutations can also induce total or selective drug susceptibility. Functional data and homology modeling assisted identification of critical amino acids within a drug-binding cavity that, upon mutation, abolished resistance to all drugs tested singly or in combinations. The open and closed Cdr1p models enabled the identification of amino acid residues that bordered a drug-binding cavity dominated by hydrophobic residues. The disposition of TMD residues with differential effects on drug binding and transport are consistent with a large polyspecific drug binding pocket in this yeast multidrug transporter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号