首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4439篇
  免费   36篇
  国内免费   66篇
  4541篇
  2023年   108篇
  2022年   44篇
  2021年   47篇
  2020年   36篇
  2019年   55篇
  2018年   60篇
  2017年   56篇
  2016年   46篇
  2015年   150篇
  2014年   373篇
  2013年   463篇
  2012年   387篇
  2011年   503篇
  2010年   415篇
  2009年   105篇
  2008年   126篇
  2007年   115篇
  2006年   91篇
  2005年   99篇
  2004年   80篇
  2003年   94篇
  2002年   66篇
  2001年   43篇
  2000年   41篇
  1999年   62篇
  1998年   54篇
  1997年   48篇
  1996年   44篇
  1995年   46篇
  1994年   58篇
  1993年   50篇
  1992年   48篇
  1991年   48篇
  1990年   47篇
  1989年   39篇
  1988年   55篇
  1987年   38篇
  1986年   31篇
  1985年   31篇
  1984年   40篇
  1983年   31篇
  1982年   27篇
  1981年   25篇
  1980年   15篇
  1979年   22篇
  1978年   8篇
  1976年   14篇
  1975年   15篇
  1973年   16篇
  1971年   10篇
排序方式: 共有4541条查询结果,搜索用时 15 毫秒
71.
The crystal and molecular structure of one imidazo[1,2-a]-s-triazine nucleoside and its antiviral activity are described. The crystal structure of 2-amino-8-(β-d-ribofuranosyl)imidazo-[1,2-a]-s-triazin-4-one monohydrate (C10H13N5O5·H2O) was solved by X-ray counter data. The compound crystallizes in the monoclinic space group P21 with cell dimensions a = 7.353 (1), b = 6.465 (1), c = 13.701 (1) Å, β = 104.64 (1)°. The structure was solved by direct methods and refined by full matrix least-squares technique to a final value of the conventional R-factor of 0.049 using 1998 observed intensities. The orientation of the base relative to the sugar ring defined in terms of rotation about the C(1′)-N(8) glycosyl bond is anti (47.8°). The ribose moiety exhibits C(2′)-endo, 2E conformation. The conformation around C(4′)-C(5′) is gauche?. Molecular packing is dominated by hydrogen bonds. Base stacking occurs long the b axis. 5-Aza-7-deazaguanosine has shown a marked antiviral activity in vitro against herpes simplex virus despite the fact that N(3) is effective as the hydrogen acceptor only.  相似文献   
72.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   
73.
Human microsomal cytochrome P450 (CYP) 2E1 is widely known for its ability to oxidize >70 different, mostly compact, low molecular weight drugs and other xenobiotic compounds. In addition CYP2E1 oxidizes much larger C9–C20 fatty acids that can serve as endogenous signaling molecules. Previously structures of CYP2E1 with small molecules revealed a small, compact CYP2E1 active site, which would be insufficient to accommodate medium and long chain fatty acids without conformational changes in the protein. In the current work we have determined how CYP2E1 can accommodate a series of fatty acid analogs by cocrystallizing CYP2E1 with ω-imidazolyl-octanoic fatty acid, ω-imidazolyl-decanoic fatty acid, and ω-imidazolyl-dodecanoic fatty acid. In each structure direct coordination of the imidazole nitrogen to the heme iron mimics the position required for native fatty acid substrates to yield the ω-1 hydroxylated metabolites that predominate experimentally. In each case rotation of a single Phe298 side chain merges the active site with an adjacent void, significantly altering the active site size and topology to accommodate fatty acids. The binding of these fatty acid ligands is directly opposite the channel to the protein surface and the binding observed for fatty acids in the bacterial cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium. Instead of the BM3-like binding mode in the CYP2E1 channel, these structures reveal interactions between the fatty acid carboxylates and several residues in the F, G, and B′ helices at successive distances from the active site.  相似文献   
74.
75.
田群  左维泽  曹玉文 《生物磁学》2011,(21):4187-4190
乙肝病毒的慢性感染是肝纤维化、肝细胞癌的重要病因,积极有效地抗病毒治疗,可显著改善HBV感染者的生活质量。干扰素、核苷(酸)类药物的抗乙肝病毒疗效已得到全球公认,本文就上述两类药物的研究进展进行综述。  相似文献   
76.
9-β- -Arabinofuranosyl-2-fluoroadenine (F-ara-A) and 9-β- -arabinofuranosyladenine (ara-A) are purine nucleoside analogues which are incorporated into nucleic acids. This study demonstrates the mutagenic properties of F-ara-A and ara-A and provides evidence for mechanisms by which the arabinosyl nucleosides induce mutation. At the drug dosages that evoked exponential cell killing, F-ara-A and ara-A caused a significant increase in the number of 6-thioguanine-resistant mutants in Chinese hamster ovary cells. Southern analyses showed that 15 of 16 drug-induced mutants had lost all or part of the HPRT gene, whereas no loss of the gene was found in 4 spontaneous mutants. We conclude that both F-ara-A and ara-A induced mutation predominantly by causing deletion of genetic method. The remarkable frequency of gene deletion among these drug-induced mutations is discussed with respect to possible mechanisms of action of arabinosyl nucleosides in mutational studies.  相似文献   
77.
Most methods of analyzing intracellular metabolites require extraction of metabolites from the cells. A concern in these methods is underestimation of metabolite levels due to incomplete extraction. In comparing extraction methods, then, it would seem that the best method for extracting a particular metabolite is the one that gives the largest yield. In extracting Escherichia coli with different methanol:water mixtures, we observed that >or=50% water gave an increased yield of nucleosides and bases compared with 相似文献   
78.
Detoxification of polycyclic aromatic hydrocarbons by fungi   总被引:8,自引:0,他引:8  
Summary The polycyclic aromatic hydrocarbons (PAHs) are a group of hazardous environmental pollutants, many of which are acutely toxic, mutagenic, or carcinogenic. A diverse group of fungi, includingAspergillus ochraceus, Cunninghamella elegans, Phanerochaete chrysosporium, Saccharomyces cerevisiae, andSyncephalastrum racemosum, have the ability to oxidize PAHs. The PAHs anthracene, benz[a]anthracene, benzo[a]pyrene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene, as well as several methyl-, nitro-, and fluoro-substituted PAHs, are metabolized by one or more of these fungi. Unsubstituted PAHs are oxidized initially to arene oxides,trans-dihydrodiols, phenols, quinones, and tetralones. Phenols andtrans-dihydrodiols may be further metabolized, and thus detoxified, by conjugation with sulfate, glucuronic acid, glucose, or xylose. Although dihydrodiol epoxides and other mutagenic and carcinogenic compounds have been detected as minor fungal metabolites of a few PAHs, most transformations performed by fungi reduce the mutagenicity and thus detoxify the PAHs.  相似文献   
79.
Lipoic acid is a covalently attached cofactor essential for the activity of 2-oxoacid dehydrogenases and the glycine cleavage system. In the absence of lipoic acid modification, the dehydrogenases are inactive, and aerobic metabolism is blocked. In Escherichia coli, two pathways for the attachment of lipoic acid exist, a de novo biosynthetic pathway dependent on the activities of the LipB and LipA proteins and a lipoic acid scavenging pathway catalyzed by the LplA protein. LipB is responsible for octanoylation of the E2 components of 2-oxoacid dehydrogenases to provide the substrates of LipA, an S-adenosyl-L-methionine radical enzyme that inserts two sulfur atoms into the octanoyl moiety to give the active lipoylated dehydrogenase complexes. We report that the intact pyruvate and 2-oxoglutarate dehydrogenase complexes specifically copurify with both LipB and LipA. Proteomic, genetic, and dehydrogenase activity data indicate that all of the 2-oxoacid dehydrogenase components are present. In contrast, LplA, the lipoate protein ligase enzyme of lipoate salvage, shows no interaction with the 2-oxoacid dehydrogenases. The interaction is specific to the dehydrogenases in that the third lipoic acid-requiring enzyme of Escherichia coli, the glycine cleavage system H protein, does not copurify with either LipA or LipB. Studies of LipB interaction with engineered variants of the E2 subunit of 2-oxoglutarate dehydrogenase indicate that binding sites for LipB reside both in the lipoyl domain and catalytic core sequences. We also report that LipB forms a very tight, albeit noncovalent, complex with acyl carrier protein. These results indicate that lipoic acid is not only assembled on the dehydrogenase lipoyl domains but that the enzymes that catalyze the assembly are also present "on site."  相似文献   
80.
Malaria parasites contain a complete glutathione (GSH) redox system, and several enzymes of this system are considered potential targets for antimalarial drugs. Through generation of a γ-glutamylcysteine synthetase (γ-GCS)-null mutant of the rodent parasite Plasmodium berghei, we previously showed that de novo GSH synthesis is not critical for blood stage multiplication but is essential for oocyst development. In this study, phenotype analyses of mutant parasites lacking expression of glutathione reductase (GR) confirmed that GSH metabolism is critical for the mosquito oocyst stage. Similar to what was found for γ-GCS, GR is not essential for blood stage growth. GR-null parasites showed the same sensitivity to methylene blue and eosin B as wild type parasites, demonstrating that these compounds target molecules other than GR in Plasmodium. Attempts to generate parasites lacking both GR and γ-GCS by simultaneous disruption of gr and γ-gcs were unsuccessful. This demonstrates that the maintenance of total GSH levels required for blood stage survival is dependent on either de novo GSH synthesis or glutathione disulfide (GSSG) reduction by Plasmodium GR. Our studies provide new insights into the role of the GSH system in malaria parasites with implications for the development of drugs targeting GSH metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号