首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   4篇
  国内免费   27篇
  308篇
  2023年   4篇
  2022年   5篇
  2021年   8篇
  2020年   2篇
  2019年   11篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   11篇
  2013年   14篇
  2012年   16篇
  2011年   14篇
  2010年   12篇
  2009年   15篇
  2008年   21篇
  2007年   14篇
  2006年   24篇
  2005年   19篇
  2004年   22篇
  2003年   10篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   6篇
  1996年   1篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   7篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有308条查询结果,搜索用时 0 毫秒
101.
SARS-CoV-2 is the coronavirus causing the ongoing pandemic with > 460 millions of infections and > 6 millions of deaths. SARS-CoV-2 nucleocapsid (N) is the only structural protein which plays essential roles in almost all key steps of the viral life cycle with its diverse functions depending on liquid–liquid phase separation (LLPS) driven by interacting with various nucleic acids. The 419-residue N protein is highly conserved in all variants including delta and omicron, and composed of both folded N-/C-terminal domains (NTD/CTD) as well as three long intrinsically disordered regions (IDRs). Recent results have suggested that its CTD and IDRs are also cryptic nucleic acid–binding domains. In this context, any small molecules capable of interfering in its interaction with nucleic acids are anticipated to modulate its LLPS and associated functions. Indeed, ATP, the energy currency existing at very high concentrations (2–12 mM) in all living cells but absent in viruses, modulates LLPS of N protein, and consequently appears to be evolutionarily hijacked by SARS-CoV-2 to promote its life cycle. Hydroxychloroquine (HCQ) has been also shown to specifically bind NTD and CTD to inhibit their interactions with nucleic acids, as well as to disrupt LLPS. Particularly, the unique structure of the HCQ-CTD complex offers a promising strategy for further design of anti-SARS-CoV-2 drugs with better affinity and specificity. The finding may indicate that LLPS is indeed druggable by small molecules, thus opening up a promising direction for drug discovery/design by targeting LLPS in general.  相似文献   
102.
血管扩张刺激磷蛋白在细胞骨架调节中的作用   总被引:2,自引:0,他引:2  
Wang TT  Li K  Wei L 《生理科学进展》2006,37(1):27-30
细胞骨架动力学的调节在细胞粘附、细胞变形、细胞移动等生理过程中是必需的。血管扩张刺激磷蛋白(vasodilator-stimulated phosphoprotein,VASP)是一种肌动蛋白结合蛋白。该蛋白包含以下结构域:EVH1(Ena/VASP homolog1)区、EVH2(Ena/VASP homolog2)区及PRR(proline—rich regions)区。近年来,研究发现VASP在与细胞骨架调节有关的各种细胞行为中起着重要作用,如神经细胞轴索的延伸、T细胞的移动、成纤维细胞的迁移等。VASP的磷酸化受PKG(cGMP-dependent protein kinase)和PKA(cAMP—dependent protein kinase)的调控。在粘附斑的形成与脱落过程中,该磷酸化起着一个“开关”的作用。本文将就近20年来VASP的研究成果,特别是近年来的进展情况做一综述。  相似文献   
103.
While cyclin-dependent kinase 5 (Cdk5) is of growing importance to neuronal signaling, its regulation remains relatively unexplored. Examination of the mechanism by which NMDA modulates the phosphorylation of protein phosphatase inhibitor-1 at Ser6 and Ser67 and dopamine- and cAMP-regulated phosphoprotein M r 32 000 at Thr75 revealed that generalized depolarization, rather than specific activation of NMDA receptors, was sufficient to induce decreases in these Cdk5 sites. Although no evidence for the involvement of the Cdk5 cofactors p35 or p39, or for L- and T-type voltage-gated Ca2+ channels, was found, evaluation of the role of phosphatases and extracellular cations revealed differential regulation of the three sites. NMDA-induced decreases in the phosphorylation of Thr75 of dopamine- and cAMP-regulated phosphoprotein M r 32 000 required protein phosphatase 1/2A activity and extracellular Ca2+. In contrast, the effects on Ser6 and Ser67 of inhibitor-1 were not cation specific; either Na+ or Ca2+ sufficed. Furthermore, while the decrease in phosphorylation of Ser6 was partially dependent on protein phosphatase 2B, that of Ser67 was independent of the major protein serine/threonine phosphatases, likely indicating the presence of a pathway by which NMDA inhibits Cdk5 activity. Thus, in the striatum the regulation of phosphorylation of Cdk5-dependent sites by NMDA occurs through multiple distinct pathways.  相似文献   
104.
105.
Menangle virus (MenV), which was isolated in Australia in 1997 during an outbreak of severe reproductive disease in pigs, is a novel member of the genus Rubulavirus in the family Paramyxoviridae. Although successfully eradicated from the affected piggery, fruit bats are considered to be the natural reservoir of the virus and therefore an ongoing risk of re-introduction to the pig population exists. Accordingly, reagents to facilitate serological surveillance are required to enhance the diagnostic capability for MenV, which is a newly recognized cause of disease in pigs with the potential to severely affect production in naive breeding herds. To address this need, recombinant MenV nucleocapsid (N) protein was expressed in the yeast Saccharomyces cerevisiae. Using the expression vector pFGG3 under control of the GAL7 promoter, high yields of recombinant MenV N protein were obtained. Electron microscopy demonstrated that purified recombinant N protein self-assembled into nucleocapsid-like particles which were identical in density and morphology, although not in length, to authentic nucleocapsids from virus-infected cells. Electron microscopy analysis also showed that yeast-expressed N protein which lacked the C-terminal tail (amino acid residues 400–519) formed significantly longer and denser nucleocapsid-like particles. Nucleocapsid-like particles derived from the full-length recombinant protein were stable and readily purified by CsCl gradient ultracentrifugation. When used as coating antigen in an indirect ELISA, the recombinant N protein reacted with sera derived from pigs experimentally infected with MenV and a simple serological assay to detect MenV-specific antibodies in pigs, fruit bats and humans could be designed on this basis.  相似文献   
106.
Shao  Wei  He  Lihong  Chen  Qingxiu  Li  Jiang  Deng  Fei  Wang  Hualin  Hu  Zhihong  Wang  Manli 《中国病毒学》2019,34(6):701-711
Virologica Sinica - Baculoviridae is a family of large DNA viruses that specifically infect insects. It contains four genera, Alpha-, Beta-, Gamma-, and Deltabaculovirus. Alphabaculovirus is...  相似文献   
107.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is responsible for SARS infection. Nucleocapsid (N) protein of SARS-CoV encapsidates the viral RNA and plays an important role in virus particle assembly and release. In this study, the N protein of SARS-CoV was found to associate with B23, a phosphoprotein in nucleolus, in vitro and in vivo. Mapping studies localized the critical N sequences for this interaction to amino acid residues 175-210, which included a serine/arginine (SR)-rich domain. In vitro phosphorylation assay showed that the N protein inhibited the B23 phosphorylation at Thr199.  相似文献   
108.
109.
Signaling by the Notch (N) pathway is critical for many developmental processes and requires complex trafficking of both the N receptor and its transmembrane ligands, Delta (Dl) and Serrate. neuralized encodes an E3 ubiquitin ligase required for N ligand internalization. Neuralized (Neur) is conserved from worms to humans and comprises two Neur homology repeat (NHR) domains, NHR1 and NHR2, and a carboxyl-terminal RING domain. We have previously shown that the RING domain is required for ubiquitin ligase activity and that NHR1 mediates binding to Dl, a ubiquitination target. In Drosophila, Neur associates with the plasma membrane and hepatocyte responsive serum phosphoprotein-positive endosomes. Here we demonstrate that Neur also exhibits nuclear envelope localization. We have determined that Neur subcellular localization is regulated by nuclear trafficking and that inhibition of chromosome region maintenance 1, a nuclear export receptor, interferes with Neur nuclear export, trapping Neur in the nucleus. Moreover, we demonstrate that nuclear envelope localization is mediated by the Neur NHR1 domain. Interestingly, Dl expression in Schneider cells is sufficient to inhibit Neur nuclear import and inhibition occurs in an NHR1-dependent manner, suggesting that Neur nuclear localization occurs in contexts where Dl expression is either low or absent. Consistent with this, we found that Neur exhibits nuclear trafficking and associates with the nuclear envelope in the secretory cells of the larval salivary gland and that overexpression of Dl can reduce Neur localization to the nucleus. Altogether, our data demonstrate that Neur localizes to the nuclear envelope and that this localization can be negatively regulated by Dl, suggesting a possible nuclear function for Neur in Drosophila.  相似文献   
110.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global pandemic of the Coronavirus disease in late 2019 (COVID-19). Vaccine development efforts have predominantly been aimed at ''Extra-viral'' Spike (S) protein as vaccine vehicles, but there are concerns regarding ‘viral immune escape’ since multiple mutations may enable the mutated virus strains to escape from immunity against S protein. The ‘Intra-viral’ Nucleocapsid (N-protein) is relatively conserved among mutant strains of coronaviruses during spread and evolution. Herein, we demonstrate novel vaccine candidates against SARS-CoV-2 by using the whole conserved N-protein or its fragment/peptides. Using ELISA assay, we showed that high titers of specific anti-N antibodies (IgG, IgG1, IgG2a, IgM) were maintained for a reasonably long duration (> 5 months), suggesting that N-protein is an excellent immunogen to stimulate host immune system and robust B-cell activation. We synthesized three peptides located at the conserved regions of N-protein among CoVs. One peptide showed as a good immunogen for vaccination as well. Cytokine arrays on post-vaccination mouse sera showed progressive up-regulation of various cytokines such as IFN-γ and CCL5, suggesting that TH1 associated responses are also stimulated. Furthermore, vaccinated mice exhibited an elevated memory T cells population. Here, we propose an unconventional vaccine strategy targeting the conserved N-protein as an alternative vaccine target for coronaviruses. Moreover, we generated a mouse monoclonal antibody specifically against an epitope shared between SARS-CoV and SARS-CoV-2, and we are currently developing the First-in-Class humanized anti-N-protein antibody to potentially treat patients infected by various CoVs in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号