首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9151篇
  免费   337篇
  国内免费   235篇
  9723篇
  2023年   96篇
  2022年   148篇
  2021年   138篇
  2020年   194篇
  2019年   215篇
  2018年   223篇
  2017年   189篇
  2016年   183篇
  2015年   187篇
  2014年   316篇
  2013年   516篇
  2012年   202篇
  2011年   345篇
  2010年   234篇
  2009年   347篇
  2008年   361篇
  2007年   419篇
  2006年   347篇
  2005年   310篇
  2004年   281篇
  2003年   294篇
  2002年   262篇
  2001年   246篇
  2000年   232篇
  1999年   223篇
  1998年   217篇
  1997年   223篇
  1996年   216篇
  1995年   238篇
  1994年   224篇
  1993年   191篇
  1992年   182篇
  1991年   135篇
  1990年   127篇
  1989年   125篇
  1988年   79篇
  1987年   90篇
  1986年   66篇
  1985年   138篇
  1984年   149篇
  1983年   90篇
  1982年   102篇
  1981年   101篇
  1980年   106篇
  1979年   66篇
  1978年   57篇
  1977年   59篇
  1976年   59篇
  1975年   51篇
  1974年   43篇
排序方式: 共有9723条查询结果,搜索用时 12 毫秒
31.
H. Quader  H. Fast 《Protoplasma》1990,157(1-3):216-224
Summary The anastomosing ER system of epidermal cells of onion bulb scales is composed of three modifications: lamellar and tubular elements, located in the cell periphery, and long tubular stands located deeper in the cytoplasm. Cytoplasmic acidification of epidermal cells by loading with weak organic acids like acetic or propionic acid causes the decay of the lamellar elements and the disappearance of long tubular strands. Organelle movement is also inhibited. The effects depend on the pH of the incubation medium and on the administered acid concentration, and are characterized by a distinct lag phase of about 7 min. The induced ER changes are transient with adaptation starting after about 50min. Buffer components alone have little influence on the cellular ER organization within a pH-range of 4.0–8.0. However, the pH of the medium strongly affects the time course of the effects as well as recovery after omitting the administered acid. Both modulation and recovery occur more rapidly at neutral or slightly alkaline pH. Actin filaments, which play a major role in ER organization and organelle movement, are not affected by cytosolic acidification.Dedicated to the memory of Professor Oswald Kiermayer  相似文献   
32.
L-Glutamate, N-methyl-D-aspartic acid (NMDA), quisqualate, and kainate were found to increase endogenous somatostatin release from primary cultures of rat cortical neurons in a dose-dependent manner. The rank order of potency calculated from the dose-response curves was quisqualate greater than glutamate = NMDA greater than kainate, with EC50 values of 0.4, 20, and 40 microM, respectively. Alanine, glutamine, and glycine did not modify the release of somatostatin. The stimulation of somatostatin release elicited by L-glutamate was Ca2+ dependent, was decreased by Mg2+, and was blocked by DL-amino-5-phosphonovaleric acid (APV) and thienylphencyclidine (TCP), two specific antagonists of NMDA receptors. The NMDA stimulatory effect was strongly inhibited by APV in a competitive manner (IC50 = 50 microM) and by TCP in a noncompetitive manner (IC50 = 90 nM). The release of somatostatin induced by the excitatory amino acid agonists was not blocked by tetrodotoxin (1 microM), a result suggesting that tetrodotoxin-sensitive, sodium-dependent action potentials are not involved in the effect. Somatostatin release in response to NMDA was potentiated by glycine, but the inhibitory strychnine-sensitive glycine receptor did not appear to be involved. Our data suggest that glutamate exerts its stimulatory action on somatostatin release essentially through an NMDA receptor subtype.  相似文献   
33.
L-lysine Transport in Chicken Jejunal Brush Border Membrane Vesicles   总被引:2,自引:0,他引:2  
The properties of l-lysine transport in chicken jejunum have been studied in brush border membrane vesicles isolated from 6-wk-old birds. l-lysine uptake was found to occur within an osmotically active space with significant binding to the membrane. The vesicles can accumulate l-lysine against a concentration gradient, by a membrane potential-sensitive mechanism. The kinetics of l-lysine transport were described by two saturable processes: first, a high affinity-transport system (K mA= 2.4 ± 0.7 μmol/L) which recognizes cationic and also neutral amino acids with similar affinity in the presence or absence of Na+ (l-methionine inhibition constant KiA, NaSCN = 21.0 ± 8.7 μmol/L and KSCN = 55.0 ± 8.4 μmol/L); second, a low-affinity transport mechanism (KmB= 164.0 ± 13.0 μmol/L) which also recognizes neutral amino acids. This latter system shows a higher affinity in the presence of Na+ (KiB for l-methionine, NaSCN = 1.7 ± 0.3 and KSCN = 3.4 ± 0.9 mmol/L). l-lysine influx was significantly reduced with N-ethylmaleimide (0.5 mmol/L) treatment. Accelerative exchange of extravesicular labeled l-lysine was demonstrated in vesicles preloaded with 1 mmol/L l-lysine, l-arginine or l-methionine. Results support the view that l-lysine is transported in the chicken jejunum by two transport systems, A and B, with properties similar to those described for systems b 0,+ and y+, respectively. Received: 14 August 1995/Revised: 2 April 1996  相似文献   
34.
We studied the nectar characteristics in relation to flower age of the summer flowering Mediterranean shrubCapparis spinosa in three localities in Southern Greece. Anthesis was nocturnal. Nectar volume, concentration, and sucrose/hexose ratio varied with site, year, and between individual plants; amino acid concentration varied only with site. The sucrose/hexose ratio decreased considerably with flower age, while the glucose/fructose ratio remained constant (ca. 1), implying that nectar sucrose broke down in the course of anthesis. Sugar breakdown increased with water content of nectar. Amino acid concentration was strongly age-dependent: It was low in fresh flowers, relatively high in middle-aged ones (except aspartic acid that was extremely increased), and very high in senescent ones. We attribute the amino acid changes to phenomena related to flower senescence in the dark.  相似文献   
35.
Metabolic interactions between anaerobic bacteria in methanogenic environments   总被引:29,自引:0,他引:29  
In methanogenic environments organic matter is degraded by associations of fermenting, acetogenic and methanogenic bacteria. Hydrogen and formate consumption, and to some extent also acetate consumption, by methanogens affects the metabolism of the other bacteria. Product formation of fermenting bacteria is shifted to more oxidized products, while acetogenic bacteria are only able to metabolize compounds when methanogens consume hydrogen and formate efficiently. These types of metabolic interaction between anaerobic bacteria is due to the fact that the oxidation of NADH and FADH2 coupled to proton or bicarbonate reduction is thermodynamically only feasible at low hydrogen and formate concentrations. Syntrophic relationships which depend on interspecies hydrogen or formate transfer were described for the degradation of e.g. fatty acids, amino acids and aromatic compounds.  相似文献   
36.
Amino acid release from roots of sterile and non-sterile, solution-grown, 7-, 21- and 60-days-old forage rape plants (Brassica napus L.), was measured over periods of up to 6 hours. With sterile plants, release of amino acids into a fixed volume of collection medium (6, 12, 70 mL) was concentration-limited, giving rise to similar convex accumulation profiles for individual acids. In contrast, amino acid accumulation in continuously circulating collection medium was not concentration limited, giving a linear accumulation pattern. The compositions of accumulating amino acids, which were similar to those measured in root extracts, did not change significantly. However, the proportions of ALA, GABA, GLU and ILE in both root extracts and root-derived amino acids increased as plants aged. Older plants released more amino acids per plant, while younger plants released more amino acids g-1 root DW. Using non-sterile plants, the patterns of change in amino acid concentration and composition in the collection medium were completely different from those determined with sterile plants. In general, with 7-days-old plants, and 60-days-old plants that had recently become non-sterile, an initial rise in the concentration of all acids was followed by a fall to low levels. The loss of amino acids was apparently due to microbial consumption. Individual amino acids attained maximum concentration at different times during the collection process. This is attributed mainly to concentration-dependent differential assimilation of amino acids, since those with the highest initial concentrations, the major components of the mixtures released from roots, declined the earliest. When calculated rates of amino acid release from roots (Rr) and microbial consumption of amino acids (Rc) were compared (for 7-days-old plants), the highest ratios of Rc/Rr were found for ASN, ARG, GLU, GLN, and LYS. This suggests a degree of selectivity for glutamate and nitrogen-rich acids on the part of the consuming micro-organisms. With 21-days old plants and 60-days old plants grown entirely under non-sterile conditions, fluctuations in amino acid concentration were similar for all acids.  相似文献   
37.
The role of proteinaceous amino acids in rhizosphere nutrient mobilization was assessed both experimentally and theoretically. The degree of adsorption onto the soil's solid phase was dependent on both the amino acid species and on soil properties. On addition of amino acids to both soil and freshly precipitated Fe(OH)3, no detectable mobilization of nutrients (K, Na, Ca, Mg, Cu, Mn, Zn, Fe, S, P, Si and Al) was observed, indicating a very low complexation ability of the acidic, neutral and basic amino acids. This was supported by results from a solution equilibria computer model which also predicted low levels of amino acid complexation with solutes present in the soil solution. On comparison with the Fe(OH)3 and equilibria data obtained for the organic acid, citrate, it was concluded that amino acids released into the rhizosphere have a limited role in the direct acquisition of nutrients by plants. The effectiveness of root exudates such as amino acids, phytosiderophores and organic acids in nutrient mobilization from the rhizosphere is discussed with reference to rhizosphere diffusion distances, microbial degradation, rate of complexation and the root's capacity to recapture exudate-metal complexes from the soil.  相似文献   
38.
Summary Homocysteine (HC) is a radiation protector but toxic to bone. Its derivative homocysteine thiolactone (HCTL) and the alpha-alkylated analogue (A-methyl-HCTL) was fed to mice for a period of six weeks in a daily dose of 50 mg/kg body weight. Parameters for bone matrix as collagen content, acid solubility of bone collagen, urinary bone collagen cross links (pyridinolines) and urinary acid glycosaminoglycans were determined. Urinary acid glycosaminoglycans were significantly reduced in the HCTL treated group but not in the alpha-methyl-homocysteine thiolactone (A-methyl-HCTL) group (controls: 45 ± 7 mg/mmol creatinine, homocysteine thiolactone 38 ± 5 mg/mmol creatinine, A-methyl HCTL 45 ± 6 mg/mmol creatinine).No differences were found for the parameters of bone collagen between the groups. The potent radiation protecting methylated derivative therefore did not change bone matrix and should be a candidate for further toxicological studies.  相似文献   
39.
Summary Although the regulatory activity of steroid hormones on amino acid metabolism has been described, no information is published on the effect of ovariectomy. We studied the influence of ovariectomy in Wistar rats determining the amino acids phenylalanine and tyrosine in liver, kidney, plasma and urine. 32 animals were used in the study, 12 animals were sham operated, 9 animals were ovariectomized and 11 rats were ovariectomized and supplemented with estradiol. No quantitative changes were detected comparing liver and kidney phenylalanine and tyrosine between the groups (sham operated rats liver phenylalanine 2,53nM/mg ± 1,07; liver tyrosine 1.95nM/mg ± 0.92; kidney phenylalanine 2.16nM/mg ± 0.53; kidney tyrosine 1.80nM/mg ± 0.39. Ovariectomized rats showed liver phenylalanine 3.07nM/mg ± 1.14; liver tyrosine 2.63nM/mg ± 1.01; kidney phenylalanine 2.30 nM/mg ± 0.74; kidney tyrosine 1.93nM/mg ± 0.63. Ovariectomized and estradiol supplemented rats presented with liver phenylalanine 2.84nM/mg ± 1.40; liver tyrosine 2.35nM/mg ± 1.28; kidney phenylalanine 1.91nM/mg ± 0.26, kidney tyrosine 1.67nM/mg ± 0.23.). When, however, the phenylalanine/tyrosine ratio in the liver was evaluated, ovariectomized rats showed a significant decrease of the quotient (p = 0.001). The phenylalanine/tyrosine ratio was restored by estradiol replacement. Our findings show that phenylalanine and tyrosine metabolism is under estradiol control. The effect on the metabolic changes could be mediated by enzyme systems as phenylalanine hydroxylase, tyrosine hydroxylase and tyrosine aminotransferase. Our results would be compatible with previous reports on the stimulatory effect of estradiol on these enzymes. The kidney phenylalanine/tyrosine ratio was unaffected by ovariectomy and/or estradiol replacement which can be easily explained by different pools, enzyme activities, filtration/reabsorption effects, etc.The urinary P/T ratio was decreased by ovariectomy and restored by estradiol replacement indicating endocrine control of renal reabsorption and secretion mechanisms.  相似文献   
40.
Summary The structure-activity data of 6 years on 395 analogs of the luteinizing hormone releasing hormone (LHRH) have been studied to determine effective substituents for the ten positions for maximal antiovulatory activity and minimal histamine release. The numbers of substituents studied in the ten positions are as follows: (41)1-(12)2-(12)3-(5)4-(47)5-(52)6-(16)7-(18)8-(4)9-(8)10. In position 1, DNal and DQal were effective with the former being more frequently the better substituent. DpClPhe was uniquely effective in position 2. Positions 3 and 4 are very sensitive to change. D3Pal in position 3 and Ser in position 4 of LHRH were in the best antagonists. PicLys and cPzACAla were the most successful residues in position 5 with cPzACAla being the better substituent. Position 6 was the most flexible and many substituents were effective; particularly DPicLys. Leu7 was most often present in the best antagonists. In position 8, Arg was effective for both antiovulatory activity and histamine release; ILys was effective for potency and lesser histamine release. Pro9 of LHRH was retained. DAlaNH2 10 was in the best antagonists.Abbreviations AABLys N -(4-acetylaminobenzoyl)lysine - AALys N -anisinoyl-lysine - AAPhe 3-(4-acetylaminophenyl)lysine - Abu 2-aminobutyric acid - ACLys N -(6-aminocaproyl)lysine - ACyh 1-aminocyclohexanecarboxylic acid - ACyp 1-aminocyclopentanecarboxylic acid - Aile alloisoleucine - AnGlu 4-(4-methoxy-phenylcarbamoyl)-2-aminobutyric acid - 2ANic 2-aminonicotinic acid - 6ANic 6-aminonicotinic acid - APic 6-aminopicolinic acid - APh 4-aminobenzoic acid - APhe 4-aminophynylalanine - APz 3-amino-2-pyrazinecarboxylic acid - Aze azetidine-2-carboxylic acid - Bim 5-benzimidazolecarboxylic acid - BzLys N -benzoyllysine - Cit citrulline - Cl2Phe 3-(3,4-dichlorphenyl)alanine - cPzACAla cis-3-(4-pyrazinylcarbonylaminocyclohexyl)alnine - cPmACAla cis-3-[4-(4-pyrimidylcarbonyl)aminocyclohexyl]alanine - Dbf 3-(2-dibenzofuranyl)alanine - DMGLys N -(N,N-dimethylglycyl)lysine - Dpo N -(4,6-dimethyl-2-pyrimidyl)-ornithine - F2Ala 3,3-difluoroalanine - hNal 4-(2-naphthyl)-2-aminobutyric acid - HOBLys N -(4-hydroxybenzoyl)lysine - hpClPhe 4-(4-chlorophenyl)-2-amino-butyric acid - Hse homoserine, 2-amino-4-hydroxybutanoic acid - ICapLys N -(6-isopropylaminocaproyl)lysine - ILys N -isopropyllysine - Ind indoline-2-carboxylic acid - INicLys N -isonicotinoyllysine - IOrn N -isopropylornithine - Me3Arg NG,NG,NG-trimethylarginine - Me2Lys N ,N -dimethyllysine - MNal 3-[(6-methyl)-2-naphtyl]alanine - MNicLys N -(6-methylpicolinoyl)lysine - MPicLys N -(6-methylpicolinoyl)lysine - MOB 4-methoxybenzoyl - MpClPhe N-methyl-3-(4-chlorphenyl)lysine - MPZGlu glutamic acid,-4-methylpiperazine - Nal 3-(2-naphthyl)alanine - Nap 2-naphthoic acid - NicLys N -nicotinoyllysine - NO2B 4-nitrobenzoyl - NO2Phe 3-(4-nitrophenyl)alanine - oClPhe 3-(2-chlorphenyl)alanine - Opt O-phenyl-tyrosine - Pal 3-(3-pyridyl)alanine - 2Pal 3-(2-pyridyl)alanine - 2PALys N -(3-pyridylacetyl)lysine - pCapLys N -(6-picolinoylaminocaproyl)lysine - pClPhe 3-(4-chlorophenyl)alanine - pFPhe 3-(4-fluorophenyl)-alanine - Pic picolinic acid - PicLys N -picolinoyllysine - Pip piperidine-2-car-boxylic acid - PmcLys N -(4-pyrimidylcarbonyl)lysine - Ptf 3-(4-trifluromethyl phenyl)alanine - Pz pyrazinecarboxylic acid - PzAla 3-pyrazinylalanine - PzAPhe 3-(4-pyrazinylcarbonylaminophenyl)alanine - Qal 3-(3-quinolyl)alanine - Qnd-Lys N -quinaldoyllysine - Qui 3-quinolinecarboxylic acid - Qux 2-quinoxalinecarboxylic acid - Tic 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid - TinGly 2-thienylglycine - tNACAla trans-3-(4-nicotinoylaminocyclohexyl)-alanine - tPACAla trans-3-(4-picolinoylaminocyclohexyl)alanine  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号