首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4534篇
  免费   107篇
  国内免费   120篇
  2023年   20篇
  2022年   46篇
  2021年   60篇
  2020年   79篇
  2019年   112篇
  2018年   125篇
  2017年   58篇
  2016年   67篇
  2015年   135篇
  2014年   329篇
  2013年   279篇
  2012年   246篇
  2011年   339篇
  2010年   261篇
  2009年   222篇
  2008年   235篇
  2007年   218篇
  2006年   241篇
  2005年   213篇
  2004年   202篇
  2003年   166篇
  2002年   109篇
  2001年   43篇
  2000年   89篇
  1999年   83篇
  1998年   69篇
  1997年   58篇
  1996年   61篇
  1995年   65篇
  1994年   58篇
  1993年   60篇
  1992年   53篇
  1991年   42篇
  1990年   37篇
  1989年   24篇
  1988年   24篇
  1987年   21篇
  1986年   26篇
  1985年   27篇
  1984年   28篇
  1983年   8篇
  1982年   26篇
  1981年   16篇
  1980年   19篇
  1979年   15篇
  1978年   6篇
  1976年   9篇
  1972年   5篇
  1971年   6篇
  1970年   5篇
排序方式: 共有4761条查询结果,搜索用时 31 毫秒
171.
Inflammation facilitates tumor progression including metastasis. Interleukin-8 (IL-8) is a chemokine that regulates polymorphonuclear neutrophil (PMN) mobilization and activity and we hypothesize that this cytokine influences tumor behavior. We have demonstrated that IL-8 is crucial for PMN-mediated melanoma extravasation under flow conditions. In addition, IL-8 is up-regulated in PMNs upon co-culturing with melanoma cells. Melanoma cells induce IkappaB-alpha degradation in PMNs indicating that NF-kappaB signaling is active in PMNs. Furthermore, the production of IL-8 in PMNs is NF-kappaB dependent. We have further identified that interleukin-6 (IL-6) and interleukin-1beta (IL-1beta) from PMN-melanoma co-cultures synergistically contribute to IkappaB-alpha degradation and IL-8 synthesis in PMNs. Taken together, these findings show that melanoma cells induce PMNs to secrete IL-8 through activation of NF-kappaB and suggest a model in which this interaction promotes a microenvironment that is favorable for metastasis.  相似文献   
172.
The LDL receptor-related protein 1B (LRP1B) is a putative tumor suppressor homologous to LRP1. Both LRP1 and LRP1B contain cytoplasmic tails with several potential endocytosis motifs. Although the positions of these endocytic motifs are similar in both receptors, LRP1B is internalized at a 15-fold slower rate than LRP1. To determine whether the slow endocytosis of LRP1B is due to the utilization of an endocytosis motif other than the YATL motif used by LRP1, we tested minireceptors with mutations in each of the five potential motifs in the LRP1B tail. Only mutation of both NPXY motifs together abolished LRP1B endocytosis, suggesting that LRP1B can use either of these motifs for internalization. LRP1B contains a unique insertion of 33 amino acids not present in LRP1 that could lead to altered recognition of trafficking motifs. Surprisingly, deletion of this insertion had no effect on the endocytosis rate of LRP1B. However, replacing either half of the LRP1B tail with the corresponding LRP1 sequence markedly accelerated LRP1B endocytosis. From these data, we propose that both halves of the LRP1B cytoplasmic tail contribute to a unique global conformation, which results in less efficient recognition by endocytic adaptors and a slow endocytosis rate.  相似文献   
173.
174.
FXR-deficiency confers increased susceptibility to torpor   总被引:1,自引:0,他引:1  
The role of the nuclear receptor FXR in adaptive thermogenesis was investigated using FXR-deficient mice. Despite elevated serum bile acid concentrations and increased mRNA expression profiles of thermogenic genes in brown adipose tissue, FXR-deficiency did not alter energy expenditure under basal conditions. However, FXR-deficiency accelerated the fasting-induced entry into torpor in a leptin-dependent manner. FXR-deficient mice were also extremely cold-intolerant. These altered responses may be linked to a more rapid decrease in plasma concentrations of metabolic fuels (glucose, triglycerides) thus impairing uncoupling protein 1-driven thermogenesis. These results identify FXR as a modulator of energy homeostasis.  相似文献   
175.
176.
An important question in protein folding is whether the folding mechanism is sequence dependent and conserved for homologous proteins. In this work we compared the kinetic folding mechanism of five postsynaptic density protein-95, disc-large tumor suppressor protein, zonula occludens-1 (PDZ) domains, sharing similar topology but having different primary structures. Investigation of the different proteins under various experimental conditions revealed that the folding kinetics of each member of the PDZ family can be described by a model with two transition states separated by an intermediate. Moreover, the positions of the two transition states along the reaction coordinate (as given by their beta(T)-values) are fairly constant for the five PDZ domains.  相似文献   
177.
CCN5 Expression in mammals. II. Adult rodent tissues   总被引:1,自引:1,他引:0  
CCN5 is a secreted heparin- and estrogen-regulated matricellular protein that inhibits vertebrate smooth muscle cell proliferation and motility. CCN5 is expressed throughout murine embryonic development in most organs and tissues. However, after embryonic development is complete, we hypothesized that CCN5 distribution would be largely restricted to small set of tissues, including smooth muscle cells of the arteries, uterus, airway, and digestive tract. Because CCN5 inhibits proliferation of smooth muscle cells in vitro, it might function to prevent excessive growth in vivo. In contrast, another member of the CCN family, CCN2, promotes smooth muscle cell proliferation in vitro, and thus it was expected that its expression levels would be low in uninjured normal adult tissues. Frozen sections from adult tissues and organs were analyzed immunohistochemically using anti-CCN5 and anti-CCN2 antibodies. Both proteins were detected in arteries, the uterus, bronchioles, and the digestive tract as expected, and also in many other tissues including the pancreas, spleen, liver, skeletal muscle, ovary, testis, thymus, brain, olfactory epithelium, and kidney. CCN5 and CCN2 protein was found in smooth muscle, endothelial cells, epithelial cells, skeletal muscle, cells of the nervous system, and numerous other cell types. In many cells, both CCN5 and CCN2 was present in the nucleus. Rather than having opposite patterns of localization, CCN5 and CCN2 often had similar sites of expression. The wide distribution of both CCN5 and CCN2 suggests that both proteins have additional biological functions beyond those previously identified in specific cellular and pathological models.  相似文献   
178.
To investigate the effect of cell cycle inhibitor p19ARF on replicative senescence of human diploid cell, recombinant p19ARF eukaryotic expression vector was constructed and p19ARF gene was transfected into human diploid fibroblasts (WI-38 cells) by liposome-mediated transfection for overexpression. Then, the effects of p19ARF on replicative senescence of WI-38 cells were observed. The results re- vealed that, compared with control cells, the WI-38 cells in which p19ARF gene was introduced showed significant up-regulation of p53 and p21 expression level, decrease of cell generation by 10 12 generations, decline of cell growth rate with cell cycle being arrested at G1 phase, increase of positive rate of senescent marker SA-β-gal staining, and decrease of mitochondrial membrane potential. The morphology of the transfected fibroblasts presented the characteristics changes similar to senescent cells. These results indicated that high expression of p19ARF may promote the senescent process of human diploid cells.  相似文献   
179.
Proposed minimum reporting standards for chemical analysis   总被引:4,自引:0,他引:4  
There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at or . Further, community input related to this document can also be provided via this electronic forum. The contents of this paper do not necessarily reflect any position of the Government or the opinion of the Food and Drug Administration Sponsor: Metabolomics Society http://www.metabolomicssociety.org/ Reference: http://msi-workgroups.sourceforge.net/bio-metadata/reporting/pbc/ http://msi-workgroups.sourceforge.net/chemical-analysis/ Version: Revision: 5.1 Date: 09 January, 2007  相似文献   
180.
This article raises the complex issue of improving plant nutritional value through metabolic engineering and the potential of using RNAi and micro RNA technologies to overcome this complexity, focusing on a few key examples. It also highlights current knowledge of RNAi and microRNA functions and discusses recent progress in the development of new RNAi vectors and their applications. RNA interference (RNAi) and microRNA (miRNA) are recent breakthrough discoveries in the life sciences recognized by the 2006 Nobel Prize in Physiology or Medicine. The importance of these discoveries relates not only to elucidating the fundamental regulatory aspects of gene expression, but also to the tremendous potential of their applications in plants and animals. Here, we review recent applications of RNAi and microRNA for improving the nutritional value of plants, discuss applications of metabolomics technologies in genetic engineering, and provide an update on the related RNAi and microRNA technologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号