首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5405篇
  免费   420篇
  国内免费   236篇
  2023年   81篇
  2022年   130篇
  2021年   213篇
  2020年   210篇
  2019年   300篇
  2018年   270篇
  2017年   147篇
  2016年   150篇
  2015年   152篇
  2014年   402篇
  2013年   382篇
  2012年   271篇
  2011年   305篇
  2010年   197篇
  2009年   256篇
  2008年   244篇
  2007年   273篇
  2006年   213篇
  2005年   176篇
  2004年   150篇
  2003年   137篇
  2002年   120篇
  2001年   74篇
  2000年   66篇
  1999年   65篇
  1998年   81篇
  1997年   78篇
  1996年   46篇
  1995年   50篇
  1994年   43篇
  1993年   36篇
  1992年   44篇
  1991年   40篇
  1990年   31篇
  1989年   27篇
  1988年   25篇
  1987年   27篇
  1986年   23篇
  1985年   27篇
  1984年   59篇
  1983年   52篇
  1982年   64篇
  1981年   51篇
  1980年   47篇
  1979年   50篇
  1978年   32篇
  1977年   39篇
  1976年   25篇
  1974年   21篇
  1973年   19篇
排序方式: 共有6061条查询结果,搜索用时 171 毫秒
181.
Human M-proinsulin was cleaved by trypsin at the R31R32–E33 and K64R65–G66 bonds (B/C and C/A junctions), showing the same cleavage specificity as exhibited by prohormone convertases 1 and 2 respectively. Buffalo/bovine M-proinsulin was also cleaved by trypsin at the K59R60–G61 bond but at the B/C junction cleavage occurred at the R31R32–E33 as well as the R31–R32E33 bond. Thus, the human isoform in the native state, with a 31 residue connecting C-peptide, seems to have a unique structure around the B/C and C/A junctions and cleavage at these sites is predominantly governed by the structure of the proinsulin itself. In the case of both the proinsulin species the cleavage at the B/C junction was preferred (65%) over that at the C/A junction (35%) supporting the earlier suggestion of the presence of some form of secondary structure at the C/A junction. Proinsulin and its derivatives, as natural substrates for trypsin, were used and mass spectrometric analysis showed that the kcat./Km values for the cleavage were most favourable for the scission of the bonds at the two junctions (1.02 ± 0.08 × 105 s− 1 M− 1) and the cleavage of the K29–T30 bond of M-insulin-RR (1.3 ± 0.07 × 105 s− 1 M− 1). However, the K29–T30 bond in M-insulin, insulin as well as M-proinsulin was shielded from attack by trypsin (kcat./Km values around 1000 s− 1 M− 1). Hence, as the biosynthetic path follows the sequence; proinsulin → insulin-RR → insulin, the K29–T30 bond becomes shielded, exposed then shielded again respectively.  相似文献   
182.
Bacteriophage Mu, which has a contractile tail, is one of the most famous genus of Myoviridae. It has a wide host range and is thought to contribute to horizontal gene transfer. The Myoviridae infection process is initiated by adhesion to the host surface. The phage then penetrates the host cell membrane using its tail to inject its genetic material into the host. In this penetration process, Myoviridae phages are proposed to puncture the membrane of the host cell using a central spike located beneath its baseplate. The central spike of the Mu phage is thought to be composed of gene 45 product (gp45), which has a significant sequence homology with the central spike of P2 phage (gpV). We determined the crystal structure of shortened Mu gp45Δ1-91 (Arg92–Gln197) at 1.5 Å resolution and showed that Mu gp45 is a needlelike structure that punctures the membrane. The apex of Mu gp45 and that of P2 gpV contained iron, chloride, and calcium ions. Although the C-terminal domain of Mu gp45 was sufficient for binding to the E. coli membrane, a mutant D188A, in which the Asp amino acid residue that coordinates the calcium ion was replaced by Ala, did not exhibit a propensity to bind to the membrane. Therefore, we concluded that calcium ion played an important role in interaction with the host cell membrane.  相似文献   
183.
Three yeast cytochrome c peroxidase (CcP) variants with apolar distal heme pockets have been constructed. The CcP variants have Arg48, Trp51, and His52 mutated to either all alanines, CcP(triAla), all valines, CcP(triVal), or all leucines, CcP(triLeu). The triple mutants have detectable enzymatic activity at pH 6 but the activity is less than 0.02% that of wild-type CcP. The activity loss is primarily due to the decreased rate of reaction between the triple mutants and H2O2 compared to wild-type CcP. Spectroscopic properties and cyanide binding characteristics of the triple mutants have been investigated over the pH stability region of CcP, pH 4 to 8. The absorption spectra indicate that the CcP triple mutants have hemes that are predominantly five-coordinate, high-spin at pH 5 and six-coordinate, low-spin at pH 8. Cyanide binding to the triple mutants is biphasic indicating that the triple mutants have two slowly-exchanging conformational states with different cyanide affinities. The binding affinity for cyanide is reduced at least two orders of magnitude in the triple mutants compared to wild-type CcP and the rate of cyanide binding is reduced by four to five orders of magnitude. Correlation of the reaction rates of CcP and 12 distal pocket mutants with H2O2 and HCN suggests that both reactions require ionization of the reactants within the distal heme pocket allowing the anion to bind the heme iron. Distal pocket features that promote substrate ionization (basic residues involved in base-catalyzed substrate ionization or polar residues that can stabilize substrate anions) increase the overall rate of reaction with H2O2 and HCN while features that inhibit substrate ionization slow the reactions.  相似文献   
184.
The secretopeptidome comprises endogenous peptides derived from proteins secreted into the tumour microenvironment through classical and non-classical secretion. This study characterised the low-Mr (< 3 kDa) component of the human colon tumour (LIM1215, LIM1863) secretopeptidome, as a first step towards gaining insights into extracellular proteolytic cleavage events in the tumour microenvironment. Based on two biological replicates, this secretopeptidome isolation strategy utilised differential centrifugal ultrafiltration in combination with analytical RP-HPLC and nanoLC-MS/MS. Secreted peptides were identified using a combination of Mascot and post-processing analyses including MSPro re-scoring, extended feature sets and Percolator, resulting in 474 protein identifications from 1228 peptides (≤ 1% q-value, ≤ 5% PEP) — a 36% increase in peptide identifications when compared with conventional Mascot (homology ionscore thresholding). In both colon tumour models, 122 identified peptides were derived from 41 cell surface protein ectodomains, 23 peptides (12 proteins) from regulated intramembrane proteolysis (RIP), and 12 peptides (9 proteins) generated from intracellular domain proteolysis. Further analyses using the protease/substrate database MEROPS, (http://merops.sanger.ac.uk/), revealed 335 (71%) proteins classified as originating from classical/non-classical secretion, or the cell membrane. Of these, peptides were identified from 42 substrates in MEROPS with defined protease cleavage sites, while peptides generated from a further 205 substrates were fragmented by hitherto unknown proteases. A salient finding was the identification of peptides from 88 classical/non-classical secreted substrates in MEROPS, implicated in tumour progression and angiogenesis (FGFBP1, PLXDC2), cell–cell recognition and signalling (DDR1, GPA33), and tumour invasiveness and metastasis (MACC1, SMAGP); the nature of the proteases responsible for these proteolytic events is unknown. To confirm reproducibility of peptide fragment abundance in this study, we report the identification of a specific cleaved peptide fragment in the secretopeptidome from the colon-specific GPA33 antigen in 4/14 human CRC models. This improved secretopeptidome isolation and characterisation strategy has extended our understanding of endogenous peptides generated through proteolysis of classical/non-classical secreted proteins, extracellular proteolytic processing of cell surface membrane proteins, and peptides generated through RIP. The novel peptide cleavage site information in this study provides a useful first step in detailing proteolytic cleavage associated with tumourigenesis and the extracellular environment. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   
185.
The physiological and biochemical changes in the green macroalga Ulva pertusa during the progression of sporulation have been characterized. The transition from the vegetative to the sporulation stage was accompanied by an increase in chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoid content, as well as an increase in DPPH scavenging and responsiveness to diphenylamine. However, oxygen evolution and maximum electron transport rate decreased. The discrepancy between photosynthetic performance and pigment content might relate to the self-shading of spores within a sporangium. Spore-forming U. pertusa thalli were low-light-adapted, due to an increase in the number of photosynthetic units. Decreased electron transport during sporulation might trigger sporulation, as for some cyanobacteria and other Ulva spp., via oxidization of the plastoquinone pool and cyclic phosphorylation, thus producing ATP to generate carbon and nitrogen skeletons required for spores. It is thus concluded that carotenoids function both in spore initiation and/or maturation and in their photoprotection.  相似文献   
186.
Hemigrammus xaveriellus sp. nov. is described from the upper Río Vaupés basin (Amazon basin), Departamento Guaviare, Colombia. It is distinguished from all congeners by the combination of the following characters: presence of a conspicuous, dark, longitudinal midlateral stripe extending along the body; presence of a conspicuous rounded, horizontally elongated humeral blotch anterior to the beginning of the dark midlateral stripe; seven scale rows between the dorsal fin and lateral line (vs. five to six); and five scale rows between the lateral line and pelvic-fin insertion (vs. three to four). The single mature male of He. xaveriellus possessed a well-developed urogenital papilla, an unusual feature among characids. The presence of an enlarged urogenital papilla in the family is discussed, and comments regarding the putative relationships of the new species are presented.  相似文献   
187.
188.
189.
190.
By investigating the expression profiles of miR-19a and metalloproteinases (MMP13) in human fibroblast-like synoviocytes-rheumatoid arthritis (HFLS-RA) and HFL cells lines, this study intends to confirm the directly target connection between them and reveal the effect of suppressing MMP13 on HLFS-RA migration, invasion and apoptosis. After screening the abnormal expressed messenger RNAs and microRNAs in synovial tissues of patients with RA, the underlying pathway was determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The HFLS-RA cell line was transfected for the following experiments with pcDNA3.1(+) served as vector. The directly target association between miR-19a and MMP13 was confirmed by Luciferase reporter assay. Microarray analysis suggested that MMP13 was upregulated while miR-19a was downregulated in HFLS of RA tissues compared with the healthy control group. MMP13 was related to many proteins in protein-protein interaction network, which might be the main influencing factor of RA. KEGG pathway analysis identified that interleukin (IL)-17 pathway was activated in the regulation of MMP13 in the development of RA. Through observing the alteration of luciferase activity, miR-19a could indeed bind to the 3′UTR of the downstream of MMP13, the target association was then confirmed. The proliferation and invasion of HFLS-RA were promoted by overexpressing MMP13 protein. miR-19a could function as a suppressor of MMP13 and thereby retard the severity of RA. The results showed that miR-19a could regulate the expression of MMP13 in HFLS-RA by mediating the proliferation and invasion of HFLS-RA through IL-17 signaling pathway, thereby participating in the degradation of chondrocytes in the progression of RA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号