首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
  国内免费   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2013年   4篇
  2012年   5篇
  2011年   5篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   6篇
  2000年   2篇
  1999年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
11.
Previous dose range-finding studies with nonylphenol (NP) administered to rats in a soy- and alfalfa-free diet showed apparent feminization of several endpoints in male rats at doses of 25 ppm and above. One possible mechanism contributing to these effects is a reduction of testosterone at critical developmental periods. The present study was conducted as an adjunct to a multigeneration study and was designed to examine the effect of NP on testosterone production. Male rats in the F1 and F2 generations were exposed through their dams or directly to various dietary doses of NP (0, 25, 200 and 750 ppm) throughout gestation and until sacrifice at either postnatal day 2 (PND2), PND50, or PND140. Male pups in the F3 generation were examined only on PND2. At PND2, serum testosterone levels were significantly decreased in all groups exposed to NP in the F1 generation, but not in the F2 or F3 generations. The activity of 17alpha-hydroxylase/C17, 20 lyase (P450c17) in PND2 testicular homogenates was not affected by NP treatment. In F1 and F2 PND50 and PND140 rats, NP treatment did not affect serum testosterone levels. The absolute dorsolateral prostate weight was increased in the 200 and 750 ppm dose groups only in the F1 PND50 rats, however, no significant effects were observed in other male reproductive organs. NP treatment did not affect P450c17 activity in microsomes prepared from testes of F1 PND50 or PND140 rats. However, P450c17 activity was significantly decreased in testicular microsomes of F(2) PND50 (200 and 750 ppm dose groups) and PND140 (25, 200, and 750 ppm dose groups) rats. A decrease in testicular beta-nicotinamide adenine dinucleotide phosphate (NADPH) P450 reductase was also observed in all PND50 and PND140 NP-exposed rats of the F1 and F2 generations. The ability of NP to directly inhibit P450c17 activity in vitro at concentrations of 1-100 microM was also demonstrated. These results indicate that NP can inhibit the activity of enzymes involved in testosterone synthesis, but suggest minimal effects on testosterone or testosterone-dependent endpoints via this mechanism.  相似文献   
12.
The potential to enhance the anaerobic biodegradation of nonylphenol ethoxylates (NPEOs) by introducing additional sulfate or nitrate as electron acceptor was investigated. The results showed that adding nitrate or sulfate could significantly enhance the anaerobic biodegradation of NPEOs and alleviate the accumulation of their estrogenic intermediates. However, these terminal electron acceptors had no influence on the component of the anaerobic biodegradation products of NPEOs. To the best of our knowledge, it is the first report of the enhancement of anaerobic biodegradation of NPEOs by introducing additional terminal electron acceptor with relatively high redox potential. These observations have significant environmental implications in terms of the environmental behavior of NPEO contaminants in natural environment.  相似文献   
13.
Laccase from the white rot fungus strain Coriolopsis polyzona was immobilized covalently on the diatomaceous earth support Celite® R-633 using different strategies. A first methodology involved the sequential activation of the support surface with γ-aminopropyltriethoxysilane followed by the reaction of the functionalized surface with glutaraldehyde (GLU) or glyoxal (GLY) and the immobilization of laccase on the activated surface. Another strategy tested the simultaneous internal cross-linking of the protein with GLU or GLY and the immobilization of the laccase on the silanized surface. Finally, these two strategies were modified to test the impact of the concomitant addition of bovine serum albumin (BSA) as a stabilizing agent during the immobilization steps. The highest laccase activity and the greatest degree of activity recovery (tested using 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as the substrate) were achieved by the sequential immobilization procedure using GLU as the cross-linking agent. The solid catalysts featuring internal cross-linking of the protein showed significantly higher stability against several denaturants. The Michaelis–Menten kinetic parameters with respect to ABTS revealed a higher affinity for this substrate in the case of the sequential procedure compared to the simultaneous approach. The biocatalyst formed using GLU in the sequential procedure was applied in a packed bed reactor for the continuous treatment of 5 mg l−1 solutions of the endocrine disrupting chemicals (EDCs) nonylphenol (NP), bisphenol A (BPA) and triclosan (TCS) through repeated batch treatments. All of these EDCs could be eliminated at a contact time of less than 200 min by using, respectively, 3.75 units (U) of laccase activity for BPA and TCS and 1.88 U for NP. These performances of elimination were maintained over five consecutive treatment cycles using the same biocatalyst. This system could also remove these EDCs from 100 mg l−1 solutions. The Michaelis–Menten kinetic parameters with respect to these chemicals showed a decreasing affinity of the solid biocatalyst for NP, TCS and BPA in that order.  相似文献   
14.
通过研究壬基酚对黑斑蛙(Rana nigromaculata)血浆渗透压以及血细胞的影响,探讨壬基酚对黑斑蛙血液的毒性效应。用200、400和600mg/kg壬基酚分别对黑斑蛙腹部淋巴囊注射染毒,在不同的时间间隔内利用渗透压仪测量各组血浆渗透压,同时制作血涂片观察血细胞的异常现象。结果表明,在相同处理时间内,随着壬基酚浓度的增加,黑斑蛙血浆渗透压值上升,血细胞膨大,血细胞核分裂以及核质不均匀现象明显;在相同浓度处理组中,随着处理时间的延长,黑斑蛙血浆渗透压上升,血细胞膨大,细胞核损害严重。壬基酚可诱发红细胞出现微核现象,随着壬基酚浓度的增加,同一处理时间内黑斑蛙红细胞微核及核异常率呈现先上升后下降的变化规律;随着处理时间的延长,各处理组红细胞微核率及核异常率呈现下降的趋势。  相似文献   
15.
The nonylphenol (NP) biosorption and desorption potential for fungal biomass used under batch conditions was investigated using kinetics and isotherm models. Fungal biomass of Rhizopus arrhizus TISTR 3610 exhibited preferential uptake of NP, an endocrine disrupting chemicals. Sporangiospores, asexual spores, were immobilised in chitosan beads. The biosorption data of NP on the moist heat inactivated R. arrhizus–chitosan beads were analyzed using four popular adsorption isotherms and, by using non-linear least-regression with the solver add-in in Microsoft Excel, correlated in order with the Fritz–Schluender > Redlich–Peterson > Freundlich > Langmuir isotherms. The pseudo first-order kinetics was found to have the best fit with the experimental data. The diffusivity of NP in the R. arrhizus–chitosan beads was calculated using the shrinking core model, and the diffusivity values were in the ranges of 2.3736 × 10−4–1.8950 × 10−4 cm2 s−1. Desorption to recover the adsorbed NP from the beads was performed in methanol and was best described using a pseudo second-order kinetic model.  相似文献   
16.
Xenoestrogens such as 4-nonylphenol (4-NP) have been shown to affect the parr-smolt transformation, but their mechanisms of action are not known. We therefore examined effects of 4-NP and estradiol-17beta (E2) on expression of estrogen receptor (ER) alpha gene in the liver, gill, pituitary and brain of sockeye salmon to elucidate molecular mechanisms of 4-NP and E2 and developmental differences in response during smolting. Fish were treated twice within a week with 4-NP (15 and 150 mg/kg BW), E2 (2 mg/kg BW) or only vehicle at three stages of smolting, pre-smolting in March, early smolting in April and late smolting in May. The absolute amounts of ERalpha mRNA were determined by real-time PCR. The basal amounts of ERalpha mRNA peaked in April in the liver, gill and pituitary. In March, E2 extensively increased the amounts in the liver, while 4-NP had no effects at this stage. In contrast, 4-NP (but not E2) decreased liver ERalpha mRNA in April. 4-NP also decreased the amount of ERalpha mRNA in the gill in April. In the pituitary, 4-NP increased ERalpha mRNA in March but decreased it in May. There were no significant effects in the brain. Changes in basal ERalpha mRNA observed in this study indicate that estrogen responsiveness of tissues may change during salmon smolting. Furthermore, 4-NP and E2 have different effects on expression of ERalpha gene in the liver and gill during smolting, and the response is dependent on smolt stage.  相似文献   
17.
Cytochrome P450 family members participate in xenobiotic transformation as a detoxification mechanism. We have characterized a CYP gene, assigned to the 4G family, in Chironomus riparius, a reference organism in aquatic toxicology. Due to the potential interest of CYP genes and P450 proteins for monitoring pollution effects at the molecular level, the alterations in the pattern of expression of this gene, induced by different xenobiotics, were analyzed. Different compounds, such as the biocide tributyltin (TBTO) and two other well-known endocrine disruptors, nonylphenol (NP) and bisphenol A (BPA), were tested at different concentrations and acute exposures. Upregulation of the CrCYP4G gene was found after exposures to TBTO (1 ng/L 24h-0.1 ng/L 96 h) and, as measured by RT-PCR mRNA quantification, its level was up to twofold that of controls. However, in contrast, NP (1, 10, 100 μg/L, 24h) and BPA (0.5mg/L 24h-3mg/L 96 h) downregulated the gene (by around a half of the control level) suggesting that this gene responds specifically to particular chemicals in the environment. Glutathione-S-transferase (GST) enzymatic activity was also evaluated for each condition. A fairly good correlation was found with CYP4G gene behavior, as it was activated by TBTO (96 h), but inhibited by NP and BPA (24h). Only the higher concentration of BPA tested activated GST, whereas it inhibited CYP4G activity. The results show that different xenobiotics can induce distinct responses in the detoxification pathway, suggesting multiple xenobiotic transduction mechanisms. This work confirms that specific P450 codifying genes, as well as GST enzyme activities, could be suitable biomarkers for ecotoxicological studies.  相似文献   
18.
Acute and subacute toxicity of the nonylphenol (NP) on fish was investigated in laboratory toxicity tests with rosy barb (Puntius conchonious). The acute toxicity of NP to rosy barb was determined in semi-static bioassays. Median lethal concentration (LC50) for 96 h was 1.72 microM. The effects of sublethal concentrations of NP (0.17, 0.34 and 0.68 microM) on the structures and biochemical parameters [alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanin aminotransferase (ALT)] in gills, liver and kidney of rosy barb were studied after 14 days. The results showed that NP caused alteration of the structure in organs, as evidenced by the hyperplasia of epithelium and the fusion of secondary lamellae in the gills, the disappearance of the cell membrane and the cell necrosis in the liver as well as haemorrhages in the kidney. In addition, the functional enzyme activities were also changed. The increase trend in ALP activity in organs of fish treated with NP was recorded. The levels of AST and ALT in gills, liver and kidney were stimulated to rise at the lower concentration and fall at the higher concentration NP treatment compared to controls. This study suggests that NP can alter of the structures and biochemical parameters within non-endocrine tissue of fish and these changes may be mediated via destroying membrane structure and inducing cell necrosis.  相似文献   
19.
Because the endocrine disrupting effects of nonylphenol (NP) and octylphenol became evident, the degradation of long-chain alkylphenols (AP) by microorganisms was intensively studied. Most NP-degrading bacteria belong to the sphingomonads and closely related genera, while NP metabolism is not restricted to defined fungal taxa. Growth on NP and its mineralization was demonstrated for bacterial isolates, whereas ultimate degradation by fungi still remains unclear. While both bacterial and fungal degradation of short-chain AP, such as cresols, and the bacterial degradation of long-chain branched AP involves aromatic ring hydroxylation, alkyl chain oxidation and the formation of phenolic polymers seem to be preferential elimination pathways of long-chain branched AP in fungi, whereby both intracellular and extracellular oxidative enzymes may be involved. The degradation of NP by sphingomonads does not proceed via the common degradation mechanisms reported for short-chain AP, rather, via an unusual ipso-substitution mechanism. This fact underlies the peculiarity of long-chain AP such as NP isomers, which possess highly branched alkyl groups mostly containing a quaternary α-carbon. In addition to physicochemical parameters influencing degradation rates, this structural characteristic confers to branched isomers of NP a biodegradability different to that of the widely used linear isomer of NP. Potential biotechnological applications for the removal of AP from contaminated media and the difficulties of analysis and application inherent to the hydrophobic NP, in particular, are also discussed. The combination of bacteria and fungi, attacking NP at both the phenolic and alkylic moiety, represents a promising perspective.  相似文献   
20.
制革废水中壬基酚聚氧乙烯醚降解菌的分离及特性   总被引:2,自引:0,他引:2  
从长期受壬基酚聚氧乙烯醚污染的制革废水中采集水样,通过富集培养的方法从中筛选到一株可以壬基酚聚氧乙烯醚为唯一碳源生长的降解菌OPQa3。通过形态学特征观察和生理生化试验,结合16S rRNA基因序列分析,初步鉴定菌株OPQa3属于短波单胞菌属Brevundimonas sp.,其16S rRNA基因序列与Brevundimonas diminuta(EU434566.1)的相似性最高(99%)。降解菌OPQa3的生长周期为24 h;以2%的量接种菌株OPQa3,保证最终OD600=0.70,于746 mg/L的壬基酚聚氧乙烯醚培养基中,120 h内的降解率可达84.5%,菌OPQa3生长的最佳温度为30°C,最适pH值在7左右。降解性质粒检测结果表明,控制菌株OPQa3降解壬基酚聚氧乙烯醚的基因位于质粒上。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号