首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2402篇
  免费   106篇
  国内免费   98篇
  2606篇
  2024年   4篇
  2023年   16篇
  2022年   52篇
  2021年   50篇
  2020年   51篇
  2019年   79篇
  2018年   87篇
  2017年   54篇
  2016年   60篇
  2015年   82篇
  2014年   174篇
  2013年   209篇
  2012年   138篇
  2011年   141篇
  2010年   124篇
  2009年   98篇
  2008年   129篇
  2007年   106篇
  2006年   108篇
  2005年   106篇
  2004年   78篇
  2003年   62篇
  2002年   58篇
  2001年   33篇
  2000年   36篇
  1999年   48篇
  1998年   38篇
  1997年   24篇
  1996年   32篇
  1995年   34篇
  1994年   25篇
  1993年   26篇
  1992年   17篇
  1991年   14篇
  1990年   13篇
  1989年   13篇
  1988年   11篇
  1987年   12篇
  1986年   17篇
  1985年   19篇
  1984年   25篇
  1983年   24篇
  1982年   25篇
  1981年   11篇
  1980年   8篇
  1979年   10篇
  1978年   6篇
  1976年   3篇
  1973年   7篇
  1972年   3篇
排序方式: 共有2606条查询结果,搜索用时 15 毫秒
31.
There is a strong evidence that administration of antitumor drugs triggers apoptotic death of target cells. A characteristic feature of appotosis is active participation of the affected cell in its demise. Attempts have been made, therefore, to potentiate the cytotoxicity of a variety of agents by modulating the propensity of cells to respond by apoptosis. Several strategies to enhance apoptosis that involve modulation of the cell cycle or differentiation are discussed. Loss of control of the G1 checkpoint in tumor cells allows one to design treatments that arrest normal cells at the checkpoint and attempt to selectively kill tumor cells with S phase specific drugs. The possibility of a restoration of the apoptosis triggering function of the tumor suppressor gene p53 when the G1 checkpoint function is abolished is expected to increase tumor cells' sensitivity to S phase poisons. Because induction of apoptosis by many antitumor drugs is cell cycle phase specific, drug combinations that preferentially trigger apoptosis at different phases of the cycle, or recruitment of cells to the sensitive phase, offer another antitumor strategy. There is also evidence that apoptosis is potentiated when cell differentiation is triggered follwing DNA damage. This observation suggests that strategies which combine DNA damaging and differentiating drugs, under conditions where the latter are administered following DNA damage caused by the former, may be successful.  相似文献   
32.
33.
34.
Two tRNA sequences from Methanobacterium thermoautotrophium are reported. Both tRNAGlyGCC and tRNANUUAsn, the first tRNA sequences from methanogens, were determined by partial hydrolyses (both chemical and enzymatic) and analyzed by gel electrophoresis. The two tRNAs contain the unusual T-loop modifications, Cm and m1I, which are present in other archaebacterial tRNAs. Finally the presence of an unknown modification in the D-loop has been inferred by a large jump in the sequence ladder. These tRNAs are approximately equidistant from eubacterial or eukaryotic tRNAs.  相似文献   
35.
Summary Transfer RNA genes have been mapped to at least nine different loci on the physical map of the Euglena gracilis chloroplast genome. One of these loci in the ribosomal RNA operons is present three times per genome. The DNA sequences of six of the nine different loci, containing 21 different tRNA genes, have been determined. Genes corresponding to the amino acids Ala, Arg, Asn, Cys, Gln, Gly (2), Glu, His, Ile, Leu (2), Met (2), Phe, Ser, Thr, Trp, Tyr, Val, and one unassigned species have been identified. All genes except one are found in clusters of 2–6 genes. None of the known genes contains introns, nor codes for the 3-CCA terminus. In addition to these genes, two pseudo tRNA genes are present in the rDNA leader region.  相似文献   
36.
Tobacco chloroplast tRNAs have been purified by two-dimensional polyacrylamide gel electrophoresis, identified by aminoacylation, labelled at their 3-end and hybridized to tobacco chloroplast DNA restriction fragments, in order to establish a tRNA gene map. These hybridization studies have revealed the localization of at least seven genes in each inverted repeat region, a minimum of 22 tRNA genes in the large single copy region and one tRNA gene in the small single copy region. Comparison of the tobacco chloroplast tRNA gene map to that of maize shows many similarities, but also some differences suggesting that DNA sequence rearrangements have occurred in the chloroplast genome during evolution.  相似文献   
37.
Evolution of methionine initiator and phenylalanine transfer RNAs   总被引:3,自引:0,他引:3  
Summary Sequence data from methionine initiator and phenylalanine transfer RNAs were used to construct phylogenetic trees by the maximum parsimony method. Although eukaryotes, prokaryotes and chloroplasts appear related to a common ancestor, no firm conclusion can be drawn at this time about mitochondrial-coded transfer RNAs. tRNA evolution is not appropriately described by random hit models, since the various regions of the molecule differ sharply in their mutational fixation rates. Hot mutational spots are identified in the TC, the amino acceptor and the upper anticodon stems; the D arm and the loop areas on the other hand are highly conserved. Crucial tertiary interactions are thus essentially preserved while most of the double helical domain undergoes base pair interchange. Transitions are about half as costly as transversions, suggesting that base pair interchanges proceed mostly through G-U and A -C intermediates. There is a preponderance of replacements starting from G and C but this bias appears to follow the high G + C content of the easily mutated base paired regions.  相似文献   
38.
Restriction endonucleases EcoRI and HindIII generated fragments of T4 cytosine-containing DNA were inserted into bacteriophage vector λgtSuIII and plasmid vectors pMB9 and pBR313. Resulting clones were screened for hybridization with 32P labeled T4 tRNA. Recombinant bacteriophages and plasmids were isolated which contained a T4 fragment coding for T4 RNA species 1 and 2 and T4 tRNAArg. Selected λ-T4 hybrid bacteriophages were grown to high titer and their DNA analyzed by gel electrophoresis.  相似文献   
39.
40.
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus–host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号