首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8742篇
  免费   289篇
  国内免费   82篇
  2023年   70篇
  2022年   89篇
  2021年   126篇
  2020年   110篇
  2019年   157篇
  2018年   201篇
  2017年   132篇
  2016年   134篇
  2015年   166篇
  2014年   425篇
  2013年   518篇
  2012年   266篇
  2011年   567篇
  2010年   421篇
  2009年   497篇
  2008年   470篇
  2007年   508篇
  2006年   428篇
  2005年   514篇
  2004年   373篇
  2003年   245篇
  2002年   255篇
  2001年   126篇
  2000年   146篇
  1999年   156篇
  1998年   132篇
  1997年   150篇
  1996年   128篇
  1995年   142篇
  1994年   110篇
  1993年   132篇
  1992年   111篇
  1991年   103篇
  1990年   105篇
  1989年   74篇
  1988年   62篇
  1987年   55篇
  1986年   55篇
  1985年   44篇
  1984年   159篇
  1983年   86篇
  1982年   81篇
  1981年   71篇
  1980年   59篇
  1979年   59篇
  1978年   23篇
  1977年   27篇
  1976年   13篇
  1975年   12篇
  1973年   6篇
排序方式: 共有9113条查询结果,搜索用时 15 毫秒
101.
The effects of light-induced non-photochemical quenching on the minimal Fo, and variable Fv, fluorescence emissions at 690 and 730 nm in leaves were determined. Non-photochemical quenching of Fo, but not Fv, was found to be dependent upon the wavelength of emission, and was greater at 690 nm than at 730 nm. For emission at 730, compared to at 690 nm, approx. 30% of Fo was not affected by non-photochemical quenching processes in leaves of C3 plants; in maize leaves this was found to be approx. 50%. The data indicate that a substantial proportion of the pigments contributing to Fo emission at 730 nm are not quenched by light-induced, non-photochemical quenching processes and that there are large differences in the pigment matrices contributing to Fo and Fv emissions at 730 nm, compared to those at 690 nm. These findings have important implications for the accurate estimation and interpretation of non-photochemical quenching of fluorescence parameters and their use in the calculation of photochemical efficiencies in leaves. Measurements of fluorescence emissions at wavelengths above 700 nm are likely to give rise to significant errors when used for determinations of photochemical and non-photochemical quenching parameters.  相似文献   
102.
The green alga Chlamydomonas reinhardtii is a facultative heterotroph and, when cultured in the presence of acetate, will synthesize chlorophyll (Chl) and photosystem (PS) components in the dark. Analysis of the thylakoid membrane composition and function in dark grown C. reinhardtii revealed that photochemically competent PS II complexes were synthesized and assembled in the thylakoid membrane. These PS II centers were impaired in the electron-transport reaction from the primary-quinone electron acceptor, QA, to the secondary-quinone electron acceptor, QB (QB-nonreducing centers). Both complements of the PS II Chl a–b light harvesting antenna (LHC II-inner and LHC II-peripheral) were synthesized and assembled in the thylakoid membrane of dark grown C. reinhardtii cells. However, the LHC II-peripheral was energetically uncoupled from the PS II reaction center. Thus, PS II units in dark grown cells had a -type Chl antenna size with only 130 Chl (a and b) molecules (by definition, PS II units lack LHC II-peripheral). Illumination of dark grown C. reinhardtii caused pronounced changes in the organization and function of PS II. With a half-time of about 30 min, PS II centers were converted froma QB-nonreducing form in the dark, to a QB-reducing form in the light. Concomitant with this change, PS II units were energetically coupled with the LHC II-peripheral complement in the thylakoid membrane and were converted to a PS II form. The functional antenna of the latter contained more than 250 Chl(a+b) molecules. The results are discussed in terms of a light-dependent activation of the QA-QB electron-transfer reaction which is followed by association of the PS II unit with a LHC II-peripheral antenna and by inclusion of the mature form of PS II (PS II) in the membrane of the grana partition region.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - F0 non-variable fluorescence yield - Fplf intermediate fluorescence yield plateau leyel - Fmax maximum fluorescence yield - Fi initial fluorescence yield increase from F0 to Fpl (Fpl–F0) - Fv total variable fluorescence yield (Fm–F0) - DCMU dichlorophenyl-dimethylurea  相似文献   
103.
In the last few years our knowledge of the structure and function of Photosystem II in oxygen-evolving organisms has increased significantly. The biochemical isolation and characterization of essential protein components and the comparative analysis from purple photosynthetic bacteria (Deisenhofer, Epp, Miki, Huber and Michel (1984) J Mol Biol 180: 385–398) have led to a more concise picture of Photosystem II organization. Thus, it is now generally accepted that the so-called D1 and D2 intrinsic proteins bind the primary reactants and the reducing-side components. Simultaneously, the nature and reaction kinetics of the major electron transfer components have been further clarified. For example, the radicals giving rise to the different forms of EPR Signal II have recently been assigned to oxidized tyrosine residues on the D1 and D2 proteins, while the so-called Q400 component has been assigned to the ferric form of the acceptor-side iron. The primary charge-separation has been meaured to take place in about 3 ps. However, despite all recent major efforts, the location of the manganese ions and the water-oxidation mechanism still remain largely unknown. Other topics which lately have received much attention include the organization of Photosystem II in the thylakoid membrane and the role of lipids and ionic cofactors like bicarbonate, calcium and chloride. This article attempts to give an overall update in this rapidly expanding field.  相似文献   
104.
High light treatments were given to attached leaves of pumpkin (Cucurbita pepo L.) at room temperature and at 1°C where the diffusion- and enzyme-dependent repair processes of Photosystem II are at a minimum. After treatments, electron transfer activities and fluorescence induction were measured from thylakoids isolated from the treated leaves. When the photoinhibition treatment was given at 1°C, the Photosystem II electron transfer assays that were designed to require electron transfer to the plastoquinone pool showed greater inhibition than electron transfer from H2O to paraphenyl-benzoquinone, which measures all PS II centers. When the light treatment was given at room temperature, electron transfer from H2O to paraphenyl-benzoquinone was inhibited more than whole-chain electron transfer. Variable fluorescence measured in the presence of ferricyanide decreased only during room-temperature treatments. These results suggest that reaction centers of one pool of Photosystem II, non-QB-PS II, replace photoinhibited reaction centers at room temperature, while no replacement occurs at 1°C. A simulation of photoinhibition at 1°C supports this conclusion.Abbreviations BSA bovine serum albumin - Chl chlorophyll - DCMU 3-(3,4,-dichlorophenyl)-1,1,-dimethylurea - DCPIP dichlorophenol-indophenol (2,6-dichloro-4((4-hydroxyphenyl)imino)-2,5-cyclohexadien-1-one) - DPC diphenyl carbazide (2,2-diphenylcarbonic dihydrazide) - FeCN ferricyanide (hexacyanoferrate(III)) - app apparent quantum yield of photosynthetic oxygen evolution - MV methyl viologen (1,1-dimethyl-4,4-bipyridinium dichloride) - PPBQ phenyl-p-benzoquinone - PPFD photosynthetic photon flux density - PQ pool plastoquinone - QB secondary quinone acceptor of PS II - RT room temperature - WC whole chain electron transfer  相似文献   
105.
The possibility that zeaxanthin mediates the dissipation of an excess of excitation energy in the antenna chlorophyll of the photochemical apparatus has been tested through the use of an inhibitor of violaxanthin de-epoxidation, dithiothreitol (DTT), as well as through the comparison of two closely related organisms (green and blue-green algal lichens), one of which (blue-green algal lichen) naturally lacks the xanthophyll cycle. In spinach leaves, DTT inhibited a major component of the rapidly relaxing high-energy-state quenching' of chlorophyll fluorescence, which was associated with a quenching of the level of initial fluorescence (F0) and exhibited a close correlation with the zeaxanthin content of leaves when fluorescence quenching was expressed as the rate constant for radiationless energy dissipation in the antenna chlorophyll. Green algal lichens, which possess the xanthophyll cycle, exhibited the same type of fluorescence quenching as that observed in leaves. Two groups of blue-green algal lichens were used for a comparison with these green algal lichens. A group of zeaxanthin-free blue-green algal lichens did not exhibit the type of chlorophyll fluorescence quenching indicative of energy dissipation in the pigment bed. In contrast, a group of blue-green algal lichens which had formed zeaxanthin slowly through reactions other than the xanthophyll cycle, did show a very similar response to that of leaves and green algal lichens. Fluorescence quenching indicative of radiationless energy dissipation in the antenna chlorophyll was the predominant component of high-energy-state quenching in spinach leaves under conditions allowing for high rates of steady-state photosynthesis. A second, but distinctly different type of high-energy-state quenching of chlorophyll fluorescence, which was not inhibited by DTT (i.e., it was zeaxanthin independent) and which is possibly associated with the photosystem II reaction center, occurred in addition to that associated with zeaxanthin in leaves under a range of conditions which were less favorable for linear photosynthetic electron flow. In intact chloroplasts isolated from (zeaxanthin-free) spinach leaves a combination of these two types of rapidly reversible fluorescence quenching occurred under all conditions examined.Abbreviations DTT dithiothreitol - F0 (or F0) yield of instantaneous fluorescence at open PS II reaction centers in the dark (or during actinic illumination) - FM (or FM) yield of maximum fluorescence induced by a saturation pulse of light in the dark (or during actinic illumination) - FV (or FV) yield of variable fluorescence induced by a saturating pulse of light in the dark (or during actinic illumination) - k D rate constant for radiationless energy dissipation in the antenna chlorophyll - SV Stern-Volmer equation - PFD photon flux density - PS I photosystem I - PS II photosystem II - QA acceptor of photosystem II - qN coefficient of nonphotochemical chlorophyll fluorescence quenching - qP coefficient of photochemical chlorophyll fluorescence quenching  相似文献   
106.
The mechanism of excitation energy distribution between the two photosystems (state transitions) is studied in Synechocystis 6714 wild type and in wild type and a mutant lacking phycocyanin of Synechocystis 6803. (i) Measurements of fluorescence transients and spectra demonstrate that state transitions in these cyanobacteria are controlled by changes in the efficiency of energy transfer from PS II to PS I (spillover) rather than by changes in association of the phycobilisomes to PS II (mobile antenna model). (ii) Ultrastructural study (freeze-fracture) shows that in the mutant the alignment of the PS II associated EF particles is prevalent in state 1 while the conversion to state 2 results in randomization of the EF particle distribution, as already observed in the wild type (Olive et al. 1986). In the mutant, the distance between the EF particle rows is smaller than in the wild type, probably because of the reduced size of the phycobilisomes. Since a parallel increase of spillover is not observed we suggest that the probability of excitation transfer between PS II units and between PS II and PS I depends on the mutual orientation of the photosystems rather than on their distance. (iii) Measurements of the redox state of the plastoquinone pool in state 1 obtained by PS I illumination and in state 2 obtained by various treatments (darkness, anaerobiosis and starvation) show that the plastoquinone pool is oxidized in state 1 and reduced in state 2 except in starved cells where it is still oxidized. In the latter case, no important decrease of ATP was observed. Thus, we propose that in Synechocystis the primary control of the state transitions is the redox state of a component of the cytochrome b 6/f complex rather than that of the plastoquinone pool.Abbreviations DCCD dicyclohexylcarbodiimide - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - EF exoplasmic face - PQ plasto-quinone - PS photosystem - PBS phycobilisome  相似文献   
107.
The structure and arrangement of phycobilisomes of the unicellular red alga Porphyridium cruentum is compared with the organization of the thylakoid freeze-fracture particles in order to determine the relationship between phycobilisomes and photosystem II. The hemi-ellipsoidal phycobilisomes, 20 nm thick, are predominantly organized into rows; their centre to centre periodicity is 30–40 nm, so that they are well separated by a gap of 10–20 nm. The phycobilisomes are cleaved by a central faint furrow, parallel to the long axis from top to base. The organization of the exoplasmic particles in rows is similar to the arrangement of the phycobilisomes so that a structural relationship between both systems, previously demonstrated in cyanobacteria, is evident. Within the rows, the 10 nm EF-particles are grouped in tetrameric complexes separated by distances similar to those observed for phycobilisomes. We propose that the tetrameric EF-particle complexes correspond to tetrameric photosystem II complexes which bind one hemi-ellipsoidal phycobilisome on the stroma exposed surface of the thylakoid. A hypothetical model of this photosystem II-phycobilisome complex is presented.  相似文献   
108.
Abstract: The cis elements mediating activation of the tyrosine hydroxylase gene by angiotensin II were examined by transfecting tyrosine hydroxylase promoter-luciferase constructs into cultured bovine adrenal medullary cells. Angiotensin II-responsive elements are located within −54/+25-bp and −269/−55-bp promoter regions and were identified, respectively, as cyclic AMP (CRE)- and 12- O -tetradecanoylphorbol 13-acetate responsive element (TRE)-like sequences. Unlike CRE, TRE also supports basal promoter activity. Mutations of TRE or CRE that reduced angiotensin II stimulation abolished in vitro binding of nuclear proteins to those elements, suggesting that proteins forming CRE- and TRE-inducible complexes may mediate angiotensin II stimulation. The TRE is adjacent to a dyad symmetry element. Those two sites form a common regulatory unit in which the dyad symmetry element acts as a repressor of the TRE site. Isolated dyad symmetry element did not bind nuclear proteins in vitro. In supercoiled DNA it exhibited S1 nuclease sensitivity and was recognized by a DNA cruciform-specific antibody consistent with the extrusion of a cruciform structure that overlaps with the TRE. A mutation that abolished formation of the cruciform correlated with a loss of repressor activity. We propose a novel model of tyrosine hydroxylase gene regulation in which functions of the TRE are modulated via structural transition in the adjacent DNA.  相似文献   
109.
TGR(mREN2)27 is a transgenic rat harboring the murine Ren-2 gene and exhibit fulminant hypertension and marked heart hypertrophy. In order to study the role of angiotensin II in the increase of cardiac mass, these animals were treated with anti-hypertensive and non-antihypertensive doses of the angiotensin II receptor AT1 antagonist Telmisartan for 9 weeks. All doses led to significant reductions of heart hypertrophy detected by the evaluation of the diameter of cardiac muscle bundles. We conclude from this study that cardiac hypertrophy in TGR(mREN2)27 is characterized by an increased volume of cardiomyocytes and an unchanged amount of fibrous tissue and that angiotensin II plays an important role in the mechanisms leading to this phenotype.  相似文献   
110.
The oxygen flash yield (YO2) and photochemical yield of PS II (PS II) were simultaneously detected in intact Chlorella cells on a bare platinum oxygen rate electrode. The two yields were measured as a function of background irradiance in the steady-state and following a transition from light to darkness. During steady-state illumination at moderate irradiance levels, YO2 and PS II followed each other, suggesting a close coupling between the oxidation of water and QA reduction (Falkowski et al. (1988) Biochim. Biophys. Acta 933: 432–443). Following a light-to-dark transition, however, the relationship between QA reduction and the fraction of PS II reaction centers capable of evolving O2 became temporarily uncoupled. PS II recovered to the preillumination levels within 5–10 s, while the YO2 required up to 60 s to recover under aerobic conditions. The recovery of YO2 was independent of the redox state of QA, but was accompanied by a 30% increase in the functional absorption cross-section of PS II (PS II). The hysteresis between YO2 and the reduction of QA during the light-to-dark transition was dependent upon the reduction level of the plastoquinone pool and does not appear to be due to a direct radiative charge back-reaction, but rather is a consequence of a transient cyclic electron flow around PS II. The cycle is engaged in vivo only when the plastoquinone pool is reduced. Hence, the plastoquinone pool can act as a clutch that disconnects the oxygen evolution from photochemical charge separation in PS II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting enzyme (agents) - Chl chlorophyll - cyt cytochrome - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FO minimum fluorescence yield in the dark-adapted state - FI minimum fluorescence yield under ambient irradiance or during transition from the light-adapted state - FM maximum fluorescence yield in the dark-adapted state - FM maximum fluorescence yield under ambient irradiance or during transition from light-adapted state - FV, FV variable fluorescence (FV=FM–FO ; FV=FM–FI) - FRR fast repetition rate (fluorometer) - PS II quantum yield of QA reduction (PS II=(FM – FO)/FM or PS II)=(FM= – FI=)/FM=) - LHCII Chl a/b light harvesting complexes of Photosystem II - OEC oxygen evolving complex of PS II - P680 reaction center chlorophyll of PS II - PQ plastoquinone - POH2 plastoquinol - PS I Photosystem I - PS II Photosystem II - RC II reaction centers of Photosystem II - PS II the effective absorption cross-section of PHotosystem II - TL thermoluminescence - YO2 oxygen flash yield The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号