首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7687篇
  免费   247篇
  国内免费   267篇
  2023年   75篇
  2022年   81篇
  2021年   82篇
  2020年   108篇
  2019年   151篇
  2018年   188篇
  2017年   100篇
  2016年   121篇
  2015年   124篇
  2014年   377篇
  2013年   612篇
  2012年   261篇
  2011年   359篇
  2010年   249篇
  2009年   329篇
  2008年   348篇
  2007年   368篇
  2006年   311篇
  2005年   328篇
  2004年   286篇
  2003年   265篇
  2002年   183篇
  2001年   155篇
  2000年   116篇
  1999年   166篇
  1998年   146篇
  1997年   126篇
  1996年   129篇
  1995年   132篇
  1994年   143篇
  1993年   99篇
  1992年   116篇
  1991年   101篇
  1990年   94篇
  1989年   116篇
  1988年   84篇
  1987年   96篇
  1986年   85篇
  1985年   115篇
  1984年   147篇
  1983年   92篇
  1982年   117篇
  1981年   92篇
  1980年   83篇
  1979年   77篇
  1978年   71篇
  1977年   50篇
  1976年   50篇
  1974年   26篇
  1973年   29篇
排序方式: 共有8201条查询结果,搜索用时 15 毫秒
991.
l-Lactate oxidase (LOX) belongs to a family of flavin mononucleotide (FMN)-dependent α-hydroxy acid-oxidizing enzymes. Previously, the crystal structure of LOX (pH 8.0) from Aerococcus viridans was solved, revealing that the active site residues are located around the FMN. Here, we solved the crystal structures of the same enzyme at pH 4.5 and its complex with d-lactate at pH 4.5, in an attempt to analyze the intermediate steps. In the complex structure, the d-lactate resides in the substrate-binding site, but interestingly, an active site base, His265, flips far away from the d-lactate, as compared with its conformation in the unbound state at pH 8.0. This movement probably results from the protonation of His265 during the crystallization at pH 4.5, because the same flip is observed in the structure of the unbound state at pH 4.5. Thus, the present structure appears to mimic an intermediate after His265 abstracts a proton from the substrate. The flip of His265 triggers a large structural rearrangement, creating a new hydrogen bonding network between His265-Asp174-Lys221 and, furthermore, brings molecular oxygen in between d-lactate and His265. This mimic of the ternary complex intermediate enzyme-substrate-O2 could explain the reductive half-reaction mechanism to release pyruvate through hydride transfer. In the mechanism of the subsequent oxidative half-reaction, His265 flips back, pushing molecular oxygen into the substrate-binding site as the second substrate, and the reverse reaction takes place to produce hydrogen peroxide. During the reaction, the flip-flop action of His265 has a dual role as an active base/acid to define the major chemical steps. Our proposed reaction mechanism appears to be a common mechanistic strategy for this family of enzymes.  相似文献   
992.
Prevention of abnormal misfolding and aggregation of α synuclein (syn) protein in vulnerable neurons should be viable therapeutic strategies for reducing pathogenesis in Parkinson's disease. The nonamyloid component (NAC) region of α-syn shows strong tendencies to form β-sheet structures, and deletion of this region has been shown to reduce aggregation and toxicity in vitro and in vivo. The binding of a molecular species to this region may mimic the effects of such deletions. Single-chain variable fragment (scFv) antibodies retain the binding specificity of antibodies and, when genetically manipulated to create high-diversity libraries, allow in vitro selection against peptides. Accordingly, we used a yeast surface display library of an entire naïve repertoire of human scFv antibodies to select for binding to a NAC peptide. Candidate scFv antibodies (after transfer to mammalian expression vectors) were screened for viability in a neuronal cell line by transient cotransfection with A53T mutant α-syn. This provided a ranking of the protective efficacies of the initial panel of intracellular antibodies (intrabodies). High steady-state expression levels and apparent conformational epitope binding appeared more important than in vitro affinity in these assays. None of the scFv antibodies selected matched the sequences of previously reported anti-α-syn scFv antibodies. A stable cell line expressing the most effective intrabody, NAC32, showed highly significant reductions in abnormal aggregation in two separate models. Recently, intrabodies have shown promising antiaggregation and neuroprotective effects against misfolded mutant huntingtin protein. The NAC32 study extends such work significantly by utilizing information about the pathogenic capacity of a specific α-syn region to offer a new generation of in vitro-derived antibody fragments, both for further engineering as direct therapeutics and as a tool for rational drug design for Parkinson's disease.  相似文献   
993.
Glycosomes are peroxisome-like organelles essential for trypanosomatid parasites. Glycosome biogenesis is mediated by proteins called “peroxins,” which are considered to be promising drug targets in pathogenic Trypanosomatidae. The first step during protein translocation across the glycosomal membrane of peroxisomal targeting signal 1 (PTS1)-harboring proteins is signal recognition by the cytosolic receptor peroxin 5 (PEX5). The C-terminal PTS1 motifs interact with the PTS1 binding domain (P1BD) of PEX5, which is made up of seven tetratricopeptide repeats. Obtaining diffraction-quality crystals of the P1BD of Trypanosoma brucei PEX5 (TbPEX5) required surface entropy reduction mutagenesis. Each of the seven tetratricopeptide repeats appears to have a residue in the αL conformation in the loop connecting helices A and B. Five crystal structures of the P1BD of TbPEX5 were determined, each in complex with a hepta- or decapeptide corresponding to a natural or nonnatural PTS1 sequence. The PTS1 peptides are bound between the two subdomains of the P1BD. These structures indicate precise recognition of the C-terminal Leu of the PTS1 motif and important interactions between the PTS1 peptide main chain and up to five invariant Asn side chains of PEX5. The TbPEX5 structures reported here reveal a unique hydrophobic pocket in the subdomain interface that might be explored to obtain compounds that prevent relative motions of the subdomains and interfere selectively with PTS1 motif binding or release in trypanosomatids, and would therefore disrupt glycosome biogenesis and prevent parasite growth.  相似文献   
994.
Human cytidine deaminase apolipoprotein B mRNA-editing catalytic polypeptide-like 3F (APOBEC3F, or A3F), like APOBEC3G, has broad antiviral activity against diverse retroelements, including Vif-deficient human immunodeficiency virus (HIV)-1. Its antiviral functions are known to rely on its virion encapsidation and be suppressed by HIV-1 Vif, which recruits Cullin5-based E3 ubiquitin ligases. However, the factors that mediate A3F virion packaging have not yet been identified. In this study, we demonstrate that A3F specifically interacts with cellular signal recognition particle (SRP) RNA (7SL RNA), which is selectively packaged into HIV-1 virions. Efficient packaging of 7SL RNA as well as A3F was mediated by the RNA-binding nucleocapsid domain of HIV-1 Gag. Reducing 7SL RNA packaging by overexpression of SRP19 protein inhibited A3F virion packaging. Although A3F has been shown to interact with P bodies and viral genomic RNA, our data indicated that P bodies and HIV-1 genomic RNA were not required for A3F packaging. Thus, in addition to its well-known function in SRPs, 7SL RNA, which is encapsidated into diverse retroviruses, also participates in the innate antiviral function of host cytidine deaminases.  相似文献   
995.
The Amyloid-β (Aβ) peptide is a major component of the amyloid plaques associated with Alzheimer's disease (AD). Recent studies suggest that the most toxic forms of Aβ are small, soluble oligomeric aggregates. Here, we report the isolation and characterization of a single-chain variable domain (scFv) antibody isolated against oligomeric Aβ using a protocol developed in our laboratory that combines phage display technology and atomic force microscopy (AFM). Starting with a randomized, single framework phage display library, after three rounds of selection against oligomeric Aβ, we identified an scFv that bound oligomeric Aβ specifically, but not monomeric or fibrillar forms. The anti-oligomeric scFv inhibits Aβ aggregation and toxicity, and reduces the toxicity of preformed oligomeric Aβ towards human neuroblastoma cells. When used to probe samples of human brain tissue, the scFv reacted with AD tissue but not a healthy control or Parkinson's disease brain samples. The anti-oligomeric Aβ scFv therefore has potential therapeutic and diagnostic applications in specifically targeting or identifying the toxic morphologies of Aβ in AD brains.  相似文献   
996.
The enzymes of the Sirtuin family of nicotinamide-adenine-dinucleotide-dependent protein deacetylases are emerging key players in nuclear and cytosolic signaling, but also in mitochondrial regulation and aging. Mammalian mitochondria contain three Sirtuins, Sirt3, Sirt4, and Sirt5. Only one substrate is known for Sirt3 as well as for Sirt4, and up to now, no target for Sirt5 has been reported. Here, we describe the identification of novel substrates for the human mitochondrial Sirtuin isoforms Sirt3 and Sirt5. We show that Sirt3 can deacetylate and thereby activate a central metabolic regulator in the mitochondrial matrix, glutamate dehydrogenase. Furthermore, Sirt3 deacetylates and activates isocitrate dehydrogenase 2, an enzyme that promotes regeneration of antioxidants and catalyzes a key regulation point of the citric acid cycle. Sirt3 thus can regulate flux and anapleurosis of this central metabolic cycle. We further find that the N- and C-terminal regions of Sirt3 regulate its activity against glutamate dehydrogenase and a peptide substrate, indicating roles for these regions in substrate recognition and Sirtuin regulation. Sirt5, in contrast to Sirt3, deacetylates none of the mitochondrial matrix proteins tested. Instead, it can deacetylate cytochrome c, a protein of the mitochondrial intermembrane space with a central function in oxidative metabolism, as well as apoptosis initiation. Using a mitochondrial import assay, we find that Sirt5 can indeed be translocated into the mitochondrial intermembrane space, but also into the matrix, indicating that localization might contribute to Sirt5 regulation and substrate selection.  相似文献   
997.
The recently identified benzoate oxidation (box) pathway in Burkholderia xenovorans LB400 (LB400 hereinafter) assimilates benzoate through a unique mechanism where each intermediate is processed as a coenzyme A (CoA) thioester. A key step in this process is the conversion of 3,4-dehydroadipyl-CoA semialdehyde into its corresponding CoA acid by a novel aldehyde dehydrogenase (ALDH) (EC 1.2.1.x). The goal of this study is to characterize the biochemical and structural properties of the chromosomally encoded form of this new class of ALDHs from LB400 (ALDHC) in order to better understand its role in benzoate degradation. To this end, we carried out kinetic studies with six structurally diverse aldehydes and nicotinamide adenine dinucleotide (phosphate) (NAD + and NADP +). Our data definitively show that ALDHC is more active in the presence of NADP + and selective for linear medium-chain to long-chain aldehydes. To elucidate the structural basis for these biochemical observations, we solved the 1.6-Å crystal structure of ALDHC in complex with NADPH bound in the cofactor-binding pocket and an ordered fragment of a polyethylene glycol molecule bound in the substrate tunnel. These data show that cofactor selectivity is governed by a complex network of hydrogen bonds between the oxygen atoms of the 2′-phosphoryl moiety of NADP + and a threonine/lysine pair on ALDHC. The catalytic preference of ALDHC for linear longer-chain substrates is mediated by a deep narrow configuration of the substrate tunnel. Comparative analysis reveals that reorientation of an extended loop (Asn478-Pro490) in ALDHC induces the constricted structure of the substrate tunnel, with the side chain of Asn478 imposing steric restrictions on branched-chain and aromatic aldehydes. Furthermore, a key glycine (Gly104) positioned at the mouth of the tunnel allows for maximum tunnel depth required to bind medium-chain to long-chain aldehydes. This study provides the first integrated biochemical and structural characterization of a box-pathway-encoded ALDH from any organism and offers insight into the catalytic role of ALDHC in benzoate degradation.  相似文献   
998.
The light-dependent subcellular translocation of rod alpha-transducin (GNAT-1, or rod Tα) has been well documented. In dark-adapted animals, rod Tα (rTα) is predominantly located in the rod outer segment (ROS) and translocates into the rod inner segment (RIS) upon exposure to the light. Neither the molecular participants nor the mechanism(s) involved in this protein trafficking are known. We hypothesized that other proteins must interact with rTα to affect the translocations. Using the MBP-rTα fusion pulldown assay, the yeast two-hybrid assay and the co-immunoprecipitation assay, we identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and rTα as interacting proteins. Immunoprecipitation also showed β-actin associates with rTα in the dark but not in the light. To further investigate the involvement of GAPDH in light-induced rod Tα translocation, GAPDH mRNA was knocked down in vivo by transient expression of siRNAs in rat photoreceptor cells. Under completely dark- and light-adapted conditions, the translocation of rTα was not significantly different within the 'GAPDH knock-down photoreceptor cells' compared to the non-transfected control cells. However, under partial dark-adaptation, rTα translocated more slowly in the 'GAPDH knock-down cells' supporting the conclusion that GAPDH is involved in rTα translocation from the RIS to the ROS during dark adaptation.  相似文献   
999.
1. The neuroprotective effect of cactus polysaccharide (CP) on oxygen and glucose deprivation (OGD) and reoxygenation (REO)-induced damage in the cortical and hippocampal slices of rat brain was investigated. 2. Cell viability was evaluated by using the 2, 3, 5-triphenyl tetrazolium chloride (TTC) method. The fluorescence of propidium iodide (PI) staining was used for quantification of cellular survival, and lactate dehydrogenase (LDH) activity in incubation medium was assessed by LDH assay to evaluate the degree of injury. 3. The OGD ischemic condition significantly decreased cellular viability and increased LDH release in the incubation medium. CP (0.2 mg/l∼2 mg/l) protected brain slices from OGD injury in a dosage dependent manner as demonstrated by increased A 490 value of TTC, decreased PI intensity and LDH release. At the above concentration, CP also prevented the increase of nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity induced by OGD. 4. CP can protect the brain slices (cortical and hippocampus) against injury induced by OGD. Its neuroprotective effect may be partly mediated by the NO/iNOS system induced by OGD insult. Xianju Huang and Qin Li have contributed equally to this article.  相似文献   
1000.
视黄酸合成酶Raldh2基因敲除鼠胚胎没有肢体的发育在胚胎E6.75-E 8.25期间,喂给怀孕母鼠含视黄酸(0.1 mg/g食物)食物后,Raldh2基因敲除鼠E10.75胚胎后肢形态正常,前肢发育较小.原位杂交结果表明,决定肢体近 远端轴发育的标志基因(marker gene)Fgf8,决定前-后轴发育的标志基因Shh以及后肢发育特异性基因Tbx4 和Pitx1在视黄酸挽救的Raldh2基因敲除鼠E10.75胚胎的后肢表达正常.上述结果提示,视黄酸可以挽救Raldh2基因敲除鼠E10.75胚胎后肢的正常发育.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号