首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   694篇
  免费   37篇
  国内免费   2篇
  733篇
  2022年   3篇
  2021年   12篇
  2020年   16篇
  2019年   13篇
  2018年   22篇
  2017年   19篇
  2016年   12篇
  2015年   12篇
  2014年   17篇
  2013年   31篇
  2012年   20篇
  2011年   32篇
  2010年   18篇
  2009年   41篇
  2008年   39篇
  2007年   36篇
  2006年   35篇
  2005年   38篇
  2004年   34篇
  2003年   20篇
  2002年   12篇
  2001年   17篇
  2000年   19篇
  1999年   15篇
  1998年   11篇
  1997年   10篇
  1996年   11篇
  1995年   10篇
  1994年   18篇
  1993年   11篇
  1992年   13篇
  1991年   20篇
  1990年   8篇
  1989年   4篇
  1988年   8篇
  1987年   8篇
  1986年   8篇
  1985年   7篇
  1984年   6篇
  1983年   7篇
  1982年   11篇
  1981年   6篇
  1980年   4篇
  1979年   2篇
  1977年   3篇
  1976年   2篇
  1974年   3篇
  1973年   2篇
  1972年   4篇
  1971年   1篇
排序方式: 共有733条查询结果,搜索用时 15 毫秒
31.
When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques.  相似文献   
32.
Isothermal titration calorimetry data for very low c (≡K[M]0) must normally be analyzed with the stoichiometry parameter n fixed — at its known value or at any reasonable value if the system is not well characterized. In the latter case, ΔH° (and hence n) can be estimated from the T-dependence of the binding constant K, using the van't Hoff (vH) relation. An alternative is global or simultaneous fitting of data at multiple temperatures. In this Note, global analysis of low-c data at two temperatures is shown to estimate ΔH° and n with double the precision of the vH method.  相似文献   
33.
We shall construct a class of nonlinear reaction-diffusion equations starting from an infinitesimal algebraic skeleton. Our aim is to explore the possibility of an algebraic foundation of integrability properties and of stability of equilibrium states associated with nonlinear models describing patterns formation.  相似文献   
34.
Neuromuscular electrical stimulation (NMES) is used for preventing muscle atrophy and improving muscle strength in patients and healthy people. However, the current intensity of NMES is usually set at a level that causes the stimulated muscles to contract. This typically causes pain. Quantifying the instantaneous changes in muscle microcirculation and metabolism during NMES before muscle contraction occurs is crucial, because it enables the current intensity to be optimally tuned, thereby reducing the NMES‐induced muscle pain and fatigue. We applied near‐infrared spectroscopy (NIRS) to measure instantaneous tissue oxygenation and deoxygenation changes in 43 healthy young adults during NMES at 10, 15, 20, 25, 30, and 35 mA. Having been stabilized at the NIRS signal baseline, the tissue oxygenation and total hemoglobin concentration increased immediately after stimulation in a dose‐dependent manner (P < 0.05) until stimulation was stopped at the level causing muscle contraction without pain. Tissue deoxygenation appeared relatively unchanged during NMES. We conclude that NIRS can be used to determine the optimal NMES current intensity by monitoring oxygenation changes.   相似文献   
35.
A two‐photon fluorescence lifetime (2P‐FLIM) microendoscope, capable of energetic metabolism imaging through the intracellular nicotinamide adenine dinucleotide (NADH) autofluorescence, at sub‐cellular resolution, is demonstrated. It exhibits readily usable characteristics such as convenient endoscope probe diameter (≈2 mm), fiber length (>5 m) and data accumulation rate (16 frames per second (fps)), leading to a FLIM refreshing rate of ≈0.1 to 1 fps depending on the sample. The spiral scanning image formation does not influence the instrument response function (IRF) characteristics of the system. Near table‐top microscope performances are achieved through a comprehensive system including a home‐designed spectro‐temporal pulse shaper and a custom air‐silica double‐clad photonic crystal fiber, which enables to reach up to 40 mW of ≈100 fs pulses @ 760 nm with a 80 MHz repetition rate. A GRadient INdex (GRIN) lens provides a lateral resolution of 0.67 μm at the focus of the fiber probe. Intracellular NADH fluorescence lifetime data are finally acquired on cultured cells at 16 fps.   相似文献   
36.
Diffuse optical imaging (DOI) techniques provide a wide‐field or macro assessment of the functional tumor state and have shown substantial promise for monitoring treatment efficacy in cancer. Conversely, intravital microscopy provides a high‐resolution view of the tumor state and has played a key role in characterizing treatment response in the preclinical setting. There has been little prior work in investigating how the macro and micro spatial scales can be combined to develop a more comprehensive and translational view of treatment response. To address this, a new multiscale preclinical imaging technique called diffuse and nonlinear imaging (DNI) was developed. DNI combines multiphoton microscopy with spatial frequency domain imaging (SFDI) to provide multiscale data sets of tumor microvascular architecture coregistered within wide‐field hemodynamic maps. A novel method was developed to match the imaging depths of both modalities by utilizing informed SFDI spatial frequency selection. An in vivo DNI study of murine mammary tumors revealed multiscale relationships between tumor oxygen saturation and microvessel diameter, and tumor oxygen saturation and microvessel length (|Pearson's ρ| ≥ 0.5, P < 0.05). Going forward, DNI will be uniquely enabling for the investigation of multiscale relationships in tumors during treatment.   相似文献   
37.
The control of blood pressure is a complex mixture of neural, hormonal and intrinsic interactions at the level of the heart, kidney and blood vessels. While experimental approaches to understanding these interactions are useful, it remains difficult to conduct experiments to quantify these interactions as the number of parameters increases. Thus, modelling of such physiological systems can offer considerable assistance. Typical mathematical models which describe the ability of the blood vessels to change their diameter (vasoconstriction) assume linearity of operation. However, due to the interaction of multiple vasocontrictive and vasodilative effectors, there is a significant nonlinear response to the influence of neural factors, particularly at higher levels of nerve activity (often seen in subjects with high blood pressure) which leads to low blood flow rates. This paper proposes a number of nonlinear mathematical models for the relationship between neural influences (sympathetic nerve activity (SNA)) and renal blood flow, using a feedback path to model the predominantly nonlinear effect of local vasoactive modulators such as nitric oxide, which oppose the action of SNA. The model structures are motivated by basic physiological principles, while the model parameters are determined using numerical optimisation techniques using open-loop data collected from rabbits. The models were verified by demonstrating correlation between experimental results and model outputs.  相似文献   
38.
Robin S 《Biometrics》1999,55(1):37-43
Thermograms are curves resulting from thermal analysis and are of great interest in the study of various food and biological products physical properties. A method to separate underlying peaks is proposed, and statistical properties of estimates for some characteristic parameters are derived. The total number of peaks can be estimated with a sequential analysis of the residual plots. For each new peak, a statistical criterion is proposed to check whether it is significantly different from the noise of the recording. As an example, the method is applied to a summer milk fat fusion thermogram.  相似文献   
39.
Certain biological experiments investigating cell motion result in time lapse video microscopy data which may be modeled using stochastic differential equations. These models suggest statistics for quantifying experimental results and testing relevant hypotheses, and carry implications for the qualitative behavior of cells and for underlying biophysical mechanisms. Directional cell motion in response to a stimulus, termed taxis, has previously been modeled at a phenomenological level using the Keller-Segel diffusion equation. The Keller-Segel model cannot distinguish certain modes of taxis, and this motivates the introduction of a richer class of models which is nevertheless still amenable to statistical analysis. A state space model formulation is used to link models proposed for cell velocity to observed data. Sequential Monte Carlo methods enable parameter estimation via maximum likelihood for a range of applicable models. One particular experimental situation, involving the effect of an electric field on cell behavior, is considered in detail. In this case, an Ornstein- Uhlenbeck model for cell velocity is found to compare favorably with a nonlinear diffusion model.  相似文献   
40.
In this paper, we present a prey-predator nonlinear model for mammals, consisting of large- and small-size prey species with group defence, in a partially protected habitat. If the prey size is small, then it is more prone to the predator at higher densities. Conversely, large prey size at higher densities tend to develop group defence. Therefore, the predator will be attracted towards that area where prey are less in number. A new physical constant has been introduced into the radiation-type condition on that part of the boundary where interaction between prey and predator takes place. This constant allows us to efficiently model group defence capabilities of the herds and its numerical values have to be determined for different pairs of prey-predator species from field observations. A way of measuring the constants involved in the model is suggested. Numerical results are provided and thoroughly discussed for a habitat of circular shape. The obtained results show that in the region away from the protected area, the density of large-size prey species is higher than that of small-size prey species, a fact that is in accordance with observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号