首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   5篇
  国内免费   1篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   6篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   7篇
  2014年   9篇
  2013年   16篇
  2012年   4篇
  2011年   7篇
  2010年   5篇
  2009年   2篇
  2008年   11篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
21.
ARTEMIS is a member of the metallo-β-lactamase protein family. ARTEMIS has endonuclease activity at DNA hairpins and at 5′- and 3′-DNA overhangs of duplex DNA, and this endonucleolytic activity is dependent upon DNA-PKcs. There has been uncertainty about whether ARTEMIS also has 5′-exonuclease activity on single-stranded DNA and 5′-overhangs, because this 5′-exonuclease is not dependent upon DNA-PKcs. Here, we show that the 5′-exonuclease and the endonuclease activities co-purify. Second, we show that a point mutant of ARTEMIS at a putative active site residue (H115A) markedly reduces both the endonuclease activity and the 5′-exonuclease activity. Third, divalent cation effects on the 5′-exonuclease and the endonuclease parallel one another. Fourth, both the endonuclease activity and 5′-exonuclease activity of ARTEMIS can be blocked in parallel by small molecule inhibitors, which do not block unrelated nucleases. We conclude that the 5′-exonuclease is intrinsic to ARTEMIS, making it relevant to the role of ARTEMIS in nonhomologous DNA end joining.  相似文献   
22.
Creating designed zinc-finger nucleases with minimal cytotoxicity   总被引:1,自引:0,他引:1  
Zinc-finger nucleases (ZFNs) have emerged as powerful tools for delivering a targeted genomic double-strand break (DSB) to either stimulate local homologous recombination with investigator-provided donor DNA or induce gene mutations at the site of cleavage in the absence of a donor by nonhomologous end joining both in plant cells and in mammalian cells, including human cells. ZFNs are formed by fusing zinc-finger proteins to the nonspecific cleavage domain of the FokI restriction enzyme. ZFN-mediated gene targeting yields high gene modification efficiencies (> 10%) in a variety of cells and cell types by delivering a recombinogenic DSB to the targeted chromosomal locus, using two designed ZFNs. The mechanism of DSB by ZFNs requires (1) two ZFN monomers to bind to their adjacent cognate sites on DNA and (2) the FokI nuclease domains to dimerize to form the active catalytic center for the induction of the DSB. In the case of ZFNs fused to wild-type FokI cleavage domains, homodimers may also form; this could limit the efficacy and safety of ZFNs by inducing off-target cleavage. In this article, we report further refinements to obligate heterodimer variants of the FokI cleavage domain for the creation of custom ZFNs with minimal cellular toxicity. The efficacy and efficiency of the reengineered obligate heterodimer variants of the FokI cleavage domain were tested using the green fluorescent protein gene targeting reporter system. The three-finger and four-finger zinc-finger protein fusions to the REL_DKK pair among the newly generated FokI nuclease domain variants appear to eliminate or greatly reduce the toxicity of designer ZFNs to human cells.  相似文献   
23.
High linear energy transfer (LET) ionising radiation (IR) such as radon-derived alpha particles and high mass, high energy (HZE) particles of cosmic radiation are the predominant forms of IR to which humanity is exposed throughout life. High-LET forms of IR are established carcinogens relevant to human cancer, and their potent mutagenicity is believed, in part, to be due to a greater incidence of clustered DNA double strand breaks (DSBs) and associated lesions, as ionization events occur within a more confined genomic space. The repair of such DNA damage is now well-documented to occur with slower kinetics relative to that induced by low-LET IR, and to be more reliant upon homology-directed repair pathways. Underlying these phenomena is the relative inability of non-homologous end-joining (NHEJ) to adequately resolve high-LET IR-induced DSBs. Current findings suggest that the functionality of the DNA-dependent protein kinase (DNA-PK), comprised of the Ku70-Ku80 heterodimer and the DNA-PK catalytic subunit (DNA-PKcs), is particularly perturbed by high-LET IR-induced clustered DSBs, rendering DNA-PK dependent NHEJ less relevant to resolving these lesions. By contrast, the NHEJ-associated DNA processing endonuclease Artemis shows a greater relevance to high-LET IR-induced DSB repair. Here, we will review the cellular response to high-LET irradiation, the implications of the chronic, low-dose modality of this exposure and molecular pathways that respond to high-LET irradiation induced DSBs, with particular emphasis on NHEJ factors.  相似文献   
24.
Polycystic liver disease (PLD) is a heterogeneous genetic condition. PKD1 and PKD2 germline mutations are found in patients with autosomal dominant polycystic kidney disease (ADPKD). Autosomal dominant polycystic liver disease (ADPLD) is associated with germline mutations in PRKCSH, SEC63, LRP5, and recently ALG8 and SEC61. GANAB mutations are found in both patient groups. Loss of heterozygosity of PLD-genes in cyst epithelium contributes to the development of hepatic cysts. A genetic interaction network is implied in hepatic cystogenesis that connects the endoplasmic glycoprotein control mechanisms and polycystin expression and localization. Wnt signalling could be the major downstream signalling pathway that results in hepatic cyst growth. PLD in ADPLD and ADPKD probably results from changes in one common final pathway that initiates cyst growth. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   
25.
The primary pathways for DNA double strand break (DSB) repair are homologous recombination (HR) and non-homologous end–joining (NHEJ). The choice between HR and NHEJ is influenced by the extent of DNA end resection, as extensive resection is required for HR but repressive to NHEJ. Conversely, association of the DNA end-binding protein Ku, which is integral to classical NHEJ, inhibits resection. In absence of key NHEJ components, a third repair pathway is exposed; this alternative-end joining (A-EJ) is a highly error-prone process that uses micro-homologies at the breakpoints and is initiated by DNA end resection. In Saccharomyces cerevisiae, the high mobility group protein Hmo1p has been implicated in controlling DNA end resection, suggesting its potential role in repair pathway choice. Using a plasmid end-joining assay, we show here that absence of Hmo1p results in reduced repair efficiency and accuracy, indicating that Hmo1p promotes end-joining; this effect is only observed on DNA with protruding ends. Notably, inhibition of DNA end resection in an hmo1Δ strain restores repair efficiency to the levels observed in wild-type cells. In absence of Ku, HMO1 deletion also reduces repair efficiency further, while inhibition of resection restores repair efficiency to the levels observed in kuΔ. We suggest that Hmo1p functions to control DNA end resection, thereby preventing error-prone A-EJ repair and directing repairs towards classical NHEJ. The very low efficiency of DSB repair in kuΔhmo1Δ cells further suggests that excessive DNA resection is inhibitory for A-EJ.  相似文献   
26.
A key modality of non-surgical cancer management is DNA damaging therapy that causes DNA double-strand breaks that are preferentially toxic to rapidly dividing cancer cells. Double-strand break repair capacity is recognized as an important mechanism in drug resistance and is therefore a potential target for adjuvant chemotherapy. Additionally, spontaneous and environmentally induced DSBs are known to promote cancer, making DSB evaluation important as a tool in epidemiology, clinical evaluation and in the development of novel pharmaceuticals. Currently available assays to detect double-strand breaks are limited in throughput and specificity and offer minimal information concerning the kinetics of repair. Here, we present the CometChip, a 96-well platform that enables assessment of double-strand break levels and repair capacity of multiple cell types and conditions in parallel and integrates with standard high-throughput screening and analysis technologies. We demonstrate the ability to detect multiple genetic deficiencies in double-strand break repair and evaluate a set of clinically relevant chemical inhibitors of one of the major double-strand break repair pathways, non-homologous end-joining. While other high-throughput repair assays measure residual damage or indirect markers of damage, the CometChip detects physical double-strand breaks, providing direct measurement of damage induction and repair capacity, which may be useful in developing and implementing treatment strategies with reduced side effects.  相似文献   
27.
A double -strand break (DSB) is one of the most deleterious forms of DNA damage. In eukaryotic cells, two main repair pathways have evolved to repair DSBs, homologous recombination (HR) and non-homologous end-joining (NHEJ). HR is the predominant pathway of repair in the unicellular eukaryotic organism, S. cerevisiae. However, during replicative aging the relative use of HR and NHEJ shifts in favor of end-joining repair. By monitoring repair events in the HO-DSB system, we find that early in replicative aging there is a decrease in the association of long-range resection factors, Dna2-Sgs1 and Exo1 at the break site and a decrease in DNA resection. Subsequently, as aging progressed, the recovery of Ku70 at DSBs decreased and the break site associated with the nuclear pore complex at the nuclear periphery, which is the location where DSB repair occurs through alternative pathways that are more mutagenic. End-bridging remained intact as HR and NHEJ declined, but eventually it too became disrupted in cells at advanced replicative age. In all, our work provides insight into the molecular changes in DSB repair pathway during replicative aging. HR first declined, resulting in a transient increase in the NHEJ. However, with increased cellular divisions, Ku70 recovery at DSBs and NHEJ subsequently declined. In wild type cells of advanced replicative age, there was a high frequency of repair products with genomic deletions and microhomologies at the break junction, events not observed in young cells which repaired primarily by HR.  相似文献   
28.
DNA double strand break (DSB) repair pathway choice following ionizing radiation (IR) is currently an appealing research topic, which is still largely unclear. Our recent paper indicated that the complexity of DSBs is a critical factor that enhances DNA end resection. It has been well accepted that the RPA-coated single strand DNA produced by resection is a signaling structure for ATR activation. Therefore, taking advantage of high linear energy transfer (LET) radiation to effectively produce complex DSBs, we investigated how the complexity of DSB influences the function of ATR pathway on the G2/M checkpoint regulation. Human skin fibroblast cells with or without ATM were irradiated with X rays or heavy ion particles, and dual-parameter flow cytometry was used to quantitatively assess the mitotic entry at early period post radiation by detecting the cells positive for phosphor histone H3. In ATM-deficient cells, ATR pathway played a pivotal role and functioned in a dose- and LET-dependent way to regulate the early G2/M arrest even as low as 0.2 Gy for heavy ion radiation, which indicated that ATR pathway could be rapidly activated and functioned in an ATM-independent, but DSB complexity-dependent manner following exposure to IR. Furthermore, ATR pathway also functioned more efficiently in ATM-proficient cells to block G2 to M transition at early period of particle radiation exposure. Accordingly, in contrast to ATM inhibitor, ATR inhibitor had a more effective radiosensitizing effect on survival fraction following heavy ion beams as compared with X ray radiation. Taken together, our results reveal that the complexity of DSBs is a crucial factor for the activation of ATR pathway for G2/M checkpoint regulation, and ATM-dependent end resection is not essential for the activation.  相似文献   
29.
In eukaryotes from yeasts to human, DNA double-strand breaks are repaired by nonhomologous end-joining (NHEJ) or homologous integration (HI). In the human pathogenic yeast Cryptococcus neoformans, gene manipulation by HI does not occur frequently because ectopic integration by NHEJ is predominant, and it has been necessary to screen 30–100 transformants per experiment to obtain transformants with the desired genotypes. To overcome this problem, we constructed a strain in which one of the NHEJ-related genes, CnLIG4, was deleted. CnLIG4 encodes a homologue of the human DNA ligase IV involved in the last step of DNA repair by NHEJ. Gene targeting in the URA5 locus of a URA5-lacking strain TAD1 with URA5 gene fragments having 1-kb flanking sequences achieved 80% HI efficiency, which is higher than that of the wild-type control (50%). Growth phenotypes and virulence were not attenuated by deletion of the CnLIG4 gene. Such results suggest that the CnLIG4 knockout strain created in this study provides an additional alternative for the molecular genetics study of C. neoformans.  相似文献   
30.
Double strand break (DSB) repair plays an important role in chromosome evolution. We have investigated the fate of DSBs as a function of their location along the yeast chromosome XI, in a system where no conventional homologous recombination can occur. We report that the relative frequency of non-homologous endjoining (NHEJ), which is the exclusive mode of DSB repair in the internal chromosomal portion, decreases gradually towards the telomere, keeping the absolute frequency nearly constant, and that other repair mechanisms, which generally involve the loss of the distal chromosomal fragment, appear in subtelomeric regions. Distance of the DSB from chromosome ends plays a critical role in the global frequency of these repair mechanisms. Direct telomere additions are rare, and other events such as break-induced replication, plasmid incorporation, and gene conversion, involve acquisition of heterologous sequences. Therefore, in subtelomeric regions, cell survival to DSBs is higher and alternative modes of repair allow new genomic combinations to be generated. Furthermore, subtelomeric rearrangements depend on the recombination process, which, unexpectedly, also promotes the joining of heterologous sequences. Finally, we report that the Rad52 protein increases the efficiency of NHEJ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号