首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2720篇
  免费   131篇
  国内免费   135篇
  2986篇
  2024年   5篇
  2023年   46篇
  2022年   67篇
  2021年   65篇
  2020年   69篇
  2019年   96篇
  2018年   72篇
  2017年   54篇
  2016年   54篇
  2015年   88篇
  2014年   92篇
  2013年   236篇
  2012年   84篇
  2011年   62篇
  2010年   66篇
  2009年   99篇
  2008年   91篇
  2007年   93篇
  2006年   123篇
  2005年   119篇
  2004年   111篇
  2003年   108篇
  2002年   116篇
  2001年   83篇
  2000年   61篇
  1999年   66篇
  1998年   67篇
  1997年   58篇
  1996年   68篇
  1995年   53篇
  1994年   64篇
  1993年   67篇
  1992年   51篇
  1991年   67篇
  1990年   42篇
  1989年   36篇
  1988年   22篇
  1987年   38篇
  1986年   16篇
  1985年   18篇
  1984年   23篇
  1983年   6篇
  1982年   17篇
  1981年   7篇
  1980年   9篇
  1979年   14篇
  1978年   3篇
  1976年   6篇
  1975年   3篇
  1973年   2篇
排序方式: 共有2986条查询结果,搜索用时 0 毫秒
71.
Collaborative experiments were conducted to determine whether microbial populations associated with plant roots may artifactually affect the rates of Fe uptake and translocation from microbial siderophores and phytosiderophores. Results showed nonaxenic maize to have 2 to 34-fold higher Fe-uptake rates than axenically grown plants when supplied with 1 μM Fe as either the microbial siderophore, ferrioxamine B (FOB), or the barley phytosiderophore, epi-hydroxymugineic acid (HMA). In experiments with nonsterile plants, inoculation of maize or oat seedlings with soil microorganisms and amendment of the hydroponic nutrient solutions with sucrose resulted in an 8-fold increase in FOB-mediated Fe-uptake rates by Fe-stressed maize and a 150-fold increase in FOB iron uptake rates by Fe-stressed oat, but had no effect on iron uptake by Fe-sufficient plants. Conversely, Fe-stressed maize and oat plants supplied with HMA showed decreased uptake and translocation in response to microbial inoculation and sucrose amendment. The ability of root-associated microorganisms to affect Fe-uptake rates from siderophores and phytosiderophores, even in short-term uptake experiments, indicates that microorganisms can be an unpredictable confounding factor in experiments examining mechanisms for utilization of microbial siderophores or phytosiderophores under nonsterile conditions.  相似文献   
72.
Roles of iron in neoplasia   总被引:5,自引:0,他引:5  
Research and clinical observations during the past six decades have shown that: 1. Iron promotes cancer cell growth; 2. Hosts attempt to withhold or withdraw iron from cancer cells; and 3. Iron is a factor in prevention and in therapy of neoplastic disease. Although normal and neoplastic cells have similar qualitative requirements for iron, the neoplastic cells have more flexibility in acquisition of the metal. Excessive iron levels in animals and humans are associated with enhanced neoplastic cell growth. In invaded hosts, cytokine-activated macrophages increase intracellular ferritin retention of the metal, scavenge iron in areas of tumor growth, and secrete reactive nitrogen intermediates to effect efflux of nonheme iron from tumor cells. Procedures associated with lowering host intake of excess iron can assist in prevention and in management of neoplastic disease. Chemical methods for prevention of iron assimilation by neoplastic cells are being developed in experimental and clinical protocols. The antineoplastic activity of a considerable variety of chemicals, as well as of radiation, is modulated by iron. The present article focuses on recent findings and suggests directions for further cancer-iron research.  相似文献   
73.
The early changes in hepatic metallothionein (MT) and plasma zinc (Zn), copper (Cu), and iron (Fe) were investigated during the induction of adjuvant (AJ) arthritis in rats in conjunction with cyclosporin (CSA) treatment. Plasma Zn decreased after AJ injection (60% of control values at 8 h), and this was associated with a 4.5-fold increase in hepatic MT at 8 h. Plasma Zn was lowest at 16 h (40% of control), whereas hepatic MT concentrations increased to a maximum of 20-fold at 16 h. Changes in plasma Fe paralleled those of Zn, whereas plasma Cu levels were increased. Plasma metal and hepatic MT concentrations returned toward normal from d 1–7. At d 14, when marked paw swelling was apparent, hepatic MT and plasma Cu were again increased and plasma Zn decreased. Administration of CsA decreased MT induction in rats injected with AJ and also caused a marked recovery in plasma Zn and Fe levels. These changes were small but significant even in the early stages (up to 24 h) after AJ injection and were followed by a sustained improvement in all parameters, corresponding to the nonappearance of clinical arthropathy in CsA-treated rats. TNF-α and IL-6 production by peritoneal macrophages isolated from AJ-injected rats was significantly decreased by CsA treatment at d 7 and 14. The inhibition of hepatic MT induction during acute and chronic inflammation by cyclosporin emphasizes the role of the immune system in altered metal homeostasis in inflammation.  相似文献   
74.
The relationship between iron status and capacity for IL-2 production by lymphocytes was assessed in 81 children from 6 mo to 3 yr of age selected at random from a population with low socioeconomic status, undergoing free systematic examination in four children's health centers in the Paris area. Iron deficiency was defined by the existence of at least two abnormal values among the three indicators of iron status: serum ferritin level ≤12 μg/L, transferrin saturation <12%, and erythrocyte protoporphyrin concentration >3 μg/g hemoglobin. According to this definition, 53 children were classified as iron deficient and 28 as iron sufficient. No differences were observed between the iron-deficient and iron-sufficient groups in terms of the IL-2 concentration without stimulation by PHA. IL-2 production by lymphocytes stimulated with PHA, as well as the stimulation index (ratio of IL-2 concentration following stimulation by PHA to that of IL-2 concentration without stimulation by PHA) were significantly lower in iron-deficient children. The reduction in IL-2 production by activated lymphocytes observed in our study of iron-deficient children may be responsible for impairments in immunity found by other authors, particularly in cell-mediated immunity.  相似文献   
75.
The inorganic formulations of fourteen common plant tissue culture basal media were examined from the primary literature. Inaccuracies and errors were found for molecular formulae, chemical hydrations, and molar equivalences for iron/EDTA complexation. A comparison with published basal medium formulations from six commercial suppliers uncovered additional inaccuracies, modifications, and errors, thereby emphasizing the need for investigators to examine and describe medium formulations precisely in future publications.  相似文献   
76.
This work was undertaken to verify whether surface NADH oxidases or peroxidases are involved in the apoplastic reduction of Fe(III). The reduction of Fe(III)-ADP, linked to NADH-dependent activity of horseradish peroxidase (HRP), protoplasts and cells of Acer pseudoplatanus, was measured as Fe(II)-bathophenanthrolinedisulfonate (BPDS) chelate formation. In the presence of BPDS in the incubation medium (method 1), NADH-dependent HRP activity was associated with a rapid Fe(III)-ADP reduction that was almost completely inhibited by superoxide dismutase (SOD), while catalase only slowed down the rate of reduction. A. pseudoplatanus protoplasts and cells reduced extracellular Fe(III)-ADP in the absence of exogenously supplied NADH. The addition of NADH stimulated the reduction. SOD and catalase only inhibited the NADH-dependent Fe(III)-ADP reduction. Mn(II), known for its ability to scavenge O?2, inhibited both the independent and NADH-dependent Fe(III)-ADP reduction. The reductase activity of protoplasts and cells was also monitored in the absence of BPDS (method 2). The latter was added only at the end of the reaction to evaluate Fe(II) formed. Also, in this case, both preparations reduced Fe(III)-ADP. However, the addition of NADH did not stimulate Fe(III)-ADP reduction but, instead, lowered it. This may be related to a re-oxidation of Fe(II) by H2O2 that could also be produced during NADH-dependent peroxidase activity. Catalase and SOD made the Fe(III)-ADP reduction more efficient because, by removing H2O2 (catalase) or preventing H2O2 formation (SOD), they hindered the re-oxidation of Fe(II) not chelated by BPDS. As with the result obtained by method 1, Mn(II) inhibited Fe(III)-ADP reduction carried out in the presence or absence of NADH. The different effects of SOD and Mn(II), both scavengers of O?2, may depend on the ability of Mn(II) to permeate the cells more easily than SOD. These results show that A. pseudoplatanus protoplasts and cells reduce extracellular Fe(III)-ADP. Exogenously supplied NADH induces an additional reduction of Fe(III) by the activity of NADH peroxidases of the plasmalemma or cell wall. However, the latter can also trigger the formation of H2O2 that, reacting with Fe(II) (not chelated by BPDS), generates hydroxyl radicals and converts Fe(II) to Fe(III) (Fenton's reaction).  相似文献   
77.
John R. Bowyer  Antony R. Crofts 《BBA》1981,636(2):218-233
(1) Current models for the mechanism of cyclic electron transport in Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata have been investigated by observing the kinetics of electron transport in the presence of inhibitors, or in photosynthetically incompetent mutant strains. (2) In addition to its well-characterized effect on the Rieske-type iron sulfur center, 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) inhibits both cytochrome b50 and cytochrome b?90 reduction induced by flash excitation in Rps. sphaeroides and Rps. capsulata. The concentration dependency of the inhibition in the presence of antimycin (approx. 2.7 mol UHDBT/mol reaction center for 50% inhibition of extent) is very similar to that of its inhibition of the antimycin-insensitive phase of ferricytochrome c re-reduction. UHDBT did not inhibit electron transfer between the reduced primary acceptor ubiquinone (Q?I) and the secondary acceptor ubiquinone (QII) of the reaction center acceptor complex. A mutant of Rps. capsulata, strain R126, lacked both the UHDBT and antimycin-sensitive phases of cytochrome c re-reduction, and ferricytochrome b50 reduction on flash excitation. (3) In the presence of antimycin, the initial rate of cytochrome b50 reduction increased about 10-fold as the Eh(7.0) was lowered below 180 mV. A plot of the rate at the fastest point in each trace against redox potential resembles the Nernst plot for a two-electron carrier with Em(7.0) ≈ 125 ± 15 mV. Following flash excitation there was a lag of 100–500 μs before cytochrome b50 reduction began. However, there was a considerably longer lag before significant reduction of cytochrome c by the antimycin-sensitive pathway occurred. (4) The herbicide ametryne inhibited electron transfer between Q?I and QII. It was an effective inhibitor of cytochrome b50 photoreduction at Eh(7.0) 390 mV, but not at Eh(7.0) 100 mV. At the latter Eh, low concentrations of ametryne inhibited turnover after one flash in only half of the photochemical reaction centers. By analogy with the response to o-phenanthroline, it is suggested that ametryne is ineffective at inhibiting electron transfer from Q?I to the secondary acceptor ubiquinone when the latter is reduced to the semiquinone form before excitation. (5) At Eh(7.0) > 200 mV, antimycin had a marked effect on the cytochrome b50 reduction-oxidation kinetics but not on the cytochrome c and reaction center changes or the slow phase III of the electrochromic carotenoid change on a 10-ms time scale. This observation appears to rule out a mechanism in which cytochrome b50 oxidation is obligatorily and kinetically linked to the antimycin-sensitive phase of cytochrome c reduction in a reaction involving transmembrane charge transfer at high Eh values. However, at lower redox potentials, cytochrome b50 oxidation is more rapid, and may be linked to the antimycin-sensitive reduction of cytochrome c. (6) It is concluded that neither a simple linear scheme nor a simple Q-cycle model can account adequately for all the observations. Future models will have to take account of a possible heterogeneity of redox chains resulting from the two-electron gate at the level of the secondary quinone, and of the involvement of cytochrome b?90 in the rapid reactions of the cyclic electron transfer chain  相似文献   
78.
Differential extraction of sediment phosphates with NTA solutions   总被引:3,自引:3,他引:0  
Golterman  H. L. 《Hydrobiologia》1982,91(1):683-687
An extraction technique is described for the separation of iron- and calcium-bound phosphate. The iron-bound phosphate is extracted with a 0.05 M solution of Ca-NTA under reducing conditions. Iron, also, is brought into solution, which is an advantage over the NaOH extraction. The calcium-bound phosphate is extracted with a 0.05 M solution of Na-NTA. The NTA also extracts humic compounds. Organic phosphate compounds can be measured in the NTA extracts, unlike the NaOH or H2SO4 extracts such as are used in the (modified) Jackson procedure.Examples of some test compound extractions and of a calcareous sediment are given.  相似文献   
79.
Siebers  H. H.  van der Kraan  A. M.  Donzel  M. 《Hydrobiologia》1982,91(1):697-700

Iron compounds of phosphorus form a large part of the phosphorus bound in sediments. Mössbauer spectroscopy is a technique that enables us to study, directly, chemical forms of iron in solid samples. Mössbauer spectroscopy allowed us to check, directly, the selectivity of the extraction scheme for soil phosphorus proposed by Chang &; Jackson (1957), but only as far as the iron compounds are concerned. It appears that selectivity of the extraction method leaves much to be desired.

  相似文献   
80.
Artificial cytochromes c have been prepared with Fe(III) and Co(III) tetrasulfonated phthalocyanines in place of heme. Their structure and properties have been investigated by difference spectroscopy, CD, epr, electrophoresis, molecular weight estimation, and potentiometric measurements. The visible absorption spectra show the main peak at 650 nm for the iron compound 685 nm for the cobalt one. It is shown by CD experiments that incorporation of Fe(III)L or Co(III)L into apocytochrome c markedly increases helical content of the protein. Its conformation is, however, significantly altered as compared with the native cytochrome c. The epr and spectroscopic data show that the iron and cobalt phthalocyanine models represent the low spin species with the metal ions in trivalent state. Electrophoresis and molecular weight estimation indicate these complexes to be monomers. Both phthalocyanine complexes have not affinity for additional ligands characteristic for hemoglobin. They react, however, with CO, NO, and CN- when they are reduced with dithionite. Moreover, Co(II)L-apocyt c is able to combine with oxygen suggesting a structural feature in common with the oxygen-carrying heme proteins. Iron(II) complex in the same conditions is oxidized directly to the ferric state. The half-reduction potentials of Fe(III)L-apocyt c and Co(III)L-apocyt c are +374 mV and +320 mV, respectively. These complexes are reduced by cytochrome c and cytochrome c reductase (cytochrome bc1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号