全文获取类型
收费全文 | 1015篇 |
免费 | 57篇 |
国内免费 | 68篇 |
专业分类
1140篇 |
出版年
2023年 | 11篇 |
2022年 | 16篇 |
2021年 | 22篇 |
2020年 | 30篇 |
2019年 | 20篇 |
2018年 | 24篇 |
2017年 | 18篇 |
2016年 | 27篇 |
2015年 | 36篇 |
2014年 | 52篇 |
2013年 | 47篇 |
2012年 | 49篇 |
2011年 | 33篇 |
2010年 | 23篇 |
2009年 | 24篇 |
2008年 | 43篇 |
2007年 | 38篇 |
2006年 | 36篇 |
2005年 | 47篇 |
2004年 | 35篇 |
2003年 | 35篇 |
2002年 | 31篇 |
2001年 | 48篇 |
2000年 | 39篇 |
1999年 | 21篇 |
1998年 | 32篇 |
1997年 | 24篇 |
1996年 | 34篇 |
1995年 | 26篇 |
1994年 | 23篇 |
1993年 | 19篇 |
1992年 | 28篇 |
1991年 | 16篇 |
1990年 | 23篇 |
1989年 | 13篇 |
1988年 | 17篇 |
1987年 | 10篇 |
1986年 | 12篇 |
1985年 | 6篇 |
1984年 | 11篇 |
1983年 | 4篇 |
1982年 | 6篇 |
1981年 | 9篇 |
1980年 | 7篇 |
1979年 | 4篇 |
1978年 | 4篇 |
1977年 | 2篇 |
1975年 | 1篇 |
1974年 | 3篇 |
1972年 | 1篇 |
排序方式: 共有1140条查询结果,搜索用时 15 毫秒
31.
Rumela Chakrabarti Sally Shepardson Moumita Karmakar Richard Trdan Jennifer Walker Ramdas Shandilya Don Stewart Srinivasan Vijayaraghavan Walter Hoeh 《Development, growth & differentiation》2009,51(5):511-519
Our previous study documented a reproductive function for the male‐transmitted mitochondrial DNA (mtDNA)‐encoded cytochrome c oxidase subunit II (MCOX2) protein in a unionoid bivalve. Here, immunoblotting, immunohistochemistry and immunoelectron microscopy analyses demonstrate that the female‐transmitted protein (FCOX2) is: (i) expressed in both male and female gonads; (ii) maximally expressed in ovaries just prior to the time of the annual fertilization event; (iii) displayed in the cytoplasm and more strongly in the plasma membrane (microvilli), vitelline matrix and vitelline envelope of mature ovarian eggs; and (iv) strongly localized to the vitelline matrix of some eggs just prior to fertilization. These findings represent evidence for the extra‐mitochondrial localization of an mtDNA‐encoded gene product and are consistent with multifunctionality for FCOX2 in eggs. 相似文献
32.
M.-J. Cho H. W. Choi B. B. Buchanan P. G. Lemaux 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1999,98(8):1253-1262
Barley (Hordeum vulgare L.) hordeins are alcohol-soluble redundant storage proteins that accumulate in protein bodies of the starchy endosperm during
seed development. Strong endosperm-specific β-glucuronidase gene-(uidA; gus) expression driven by B1- and D-hordein promoters was observed in stably transformed barley plants co-transformed with the selectable herbicide resistance
gene, bar. PCR analysis using DNA from calli of 22 different lines transformed with B1- or D-hordein promoter-uidA fusions showed the expected 1.8-kb uidA fragment after PCR amplification. DNA-blot analysis of genomic DNA from T0 leaf tissue of 13 lines showed that 12 (11 independent) lines produced uidA fragments and that one line was uidA-negative. T1 progeny from 6 out of 12 independent regenerable transgenic lines tested for uidA expression showed a 3 : 1 segregation pattern. Of the remaining six transgenic lines, one showed a segregation ratio of 15 : 1
for GUS, one expressed bar alone, one lacked transmission of either gene to T1 progeny, and three were sterile. Stable GUS expression driven by the hordein promoters was observed in T5 progeny in one line, T4 progeny in one line, T3 progeny in three lines and T2 or T1 progeny in the remaining two fertile lines tested; homozygous transgenic plants were obtained from three lines. In the homozygous
lines the expression of the GUS protein, driven by either the B1- or D-hordein promoters, was highly expressed in endosperm at early to mid-maturation stages. Expression of bar driven by the maize ubiquitin promoter was also stably transmitted to T1 progeny in seven out of eight lines tested. However, in most lines PAT expression driven by the maize ubiquitin promoter
was gradually lost in T2 or later generations; one homozygous line was obtained. In contrast, six out of seven lines stably expressed GUS driven by
the hordein promoters in T2 or later generations. We conclude that the B1- and D-hordein promoters can be used to engineer, and subsequently study, stable endosperm-specific gene expression in barley
and potentially to modify barley seeds through genetic engineering.
Received: 28 May 1998 / Accepted: 19 December 1998 相似文献
33.
The organelle DNA in generative cell and its behavior during spermatogenesis in Pharbitis limbata and P. purpurea were observed by epifluorescence microscopy stained with 4',-6-diamidino-2-phenylindole (DAPI). In these two species, the generative cell is long and thin in which a great amount of cytoplasmic DNA is present. Most pairs of sperm cells are isomorphic, in which one end is obtuse and the other is elongate, but in a few pairs dimorphi sperms are present. The nucleus is located at one end of the cell. A lot of cytoplasmic DNA are distributed randomly throughout the cytoplasm. The size of organelle nucleoids and their fluorescence intensity are different in a sperm cell. The features of generative cell and sperm cell, and behavior of cytoplasmic DNA are similar in P. limbata and P. purpurea. The obvious differences between them are that the size and fluorescence intensity of organelle nucleoids in P. purpurea are respectively smaller and weaker than in P. limbata. The results showed that morning glory has potential of biparental or paternal cytoplasmic in heritance. Isomorphism and dimorphism of sperms, and the relationship between the ratio of nucleus and cytoplasm in sperm cell and the plastid biparental inheritance are discussed. 相似文献
34.
35.
Yanfei Pei Jun Zhang Peng Wu Li Ye Duofeng Yang Jiedan Chen Jie Li Yan Hu Xiefei Zhu Xiaoping Guo Tianzhen Zhang 《The Plant journal : for cell and molecular biology》2021,106(4):1116-1127
The floral nectary, first recognized and described by Carl Linnaeus, is a remarkable organ that serves to provide carbohydrate-rich nectar to visiting pollinators in return for gamete transfer between flowers. Therefore, the nectary has indispensable biological significance in plant reproduction and even in evolution. Only two genes, CRC and STY, have been reported to regulate floral nectary development. However, it is still unknown what genes contribute to extrafloral nectary development. Here, we report that a nectary development gene in Gossypium (GoNe), annotated as an APETALA 2/ethylene-responsive factor (AP2/ERF), is responsible for the formation of both floral and extrafloral nectaries. GoNe plants that are silenced via virus-induced gene silencing technology and/or knocked out by Cas9 produce a nectariless phenotype. Point mutation and gene truncation simultaneously in duplicated genes Ne1Ne2 lead to impaired nectary development in tetraploid cotton. There is no difference in the expression of the CRC and STY genes between the nectary TM-1 and the nectariless MD90ne in cotton. Therefore, the GoNe gene responsible for the formation of floral and extrafloral nectaries may be independent of CRC and STY. A complex mechanism might exist that restricts the nectary to a specific position with different genetic factors. Characterization of these target genes regulating nectary production has provided insights into the development, evolution, and function of nectaries and insect-resistant breeding. 相似文献
36.
成骨不全作为罕见性遗传性结缔组织疾病,具有临床异质性与遗传异质性,迄今已经分为15个亚型.有常染色体显性遗传与常染色体隐性遗传两种遗传方式.常染色体显性遗传以Ⅰ型胶原蛋白结构基因COL1A1、COL1A2突变为主.非Ⅰ型胶原蛋白突变的常染色体隐性遗传的成骨不全患者数量少,但致病基因种类多,涉及到胶原合成后异常修饰,胶原蛋白分子伴侣及羧基端前肽剪切酶缺陷、成骨细胞与破骨细胞分化及转录因子异常、钙离子通道与Wnt信号通路分子等诸多方面.致病基因及其机制的研究,对于成骨不全的基因确诊及个体化药物治疗意义重大. 相似文献
37.
Background
Biomedical data available to researchers and clinicians have increased dramatically over the past years because of the exponential growth of knowledge in medical biology. It is difficult for curators to go through all of the unstructured documents so as to curate the information to the database. Associating genes with diseases is important because it is a fundamental challenge in human health with applications to understanding disease properties and developing new techniques for prevention, diagnosis and therapy.Methods
Our study uses the automatic rule-learning approach to gene–disease relationship extraction. We first prepare the experimental corpus from MEDLINE and OMIM. A parser is applied to produce some grammatical information. We then learn all possible rules that discriminate relevant from irrelevant sentences. After that, we compute the scores of the learned rules in order to select rules of interest. As a result, a set of rules is generated.Results
We produce the learned rules automatically from the 1000 positive and 1000 negative sentences. The test set includes 400 sentences composed of 200 positives and 200 negatives. Precision, recall and F-score served as our evaluation metrics. The results reveal that the maximal precision rate is 77.8% and the maximal recall rate is 63.5%. The maximal F-score is 66.9% where the precision rate is 70.6% and the recall rate is 63.5%.Conclusions
We employ the rule-learning approach to extract gene–disease relationships. Our main contributions are to build rules automatically and to support a more complete set of rules than a manually generated one. The experiments show exhilarating results and some improving efforts will be made in the future. 相似文献38.
Sokolova VA Kustova ME Arbuzova NI Sorokin AV Moskaliova OS Bass MG Vasilyev VB 《Molecular reproduction and development》2004,68(3):299-307
To study human diseases associated with mutations in mitochondrial DNA one needs an animal model in which the distribution of abnormal mtDNA and its impact on the phenotype might be followed. We isolated human mitochondria from HepG2 cell culture and microinjected them into murine zygotes, upon which those were transplanted to the pseudopregnant mice. PCR with species-specific primers allowed detecting human mtDNA in the tissues of 7-13-day embryos. No serious alterations in the development of transmitochondrial embryos were noticed. Among various organs/tissues of the 13-day embryos, human mtDNA was detected only in the heart, skeletal muscles, and stomach, which is in line with its uneven distribution among the blastomeres of an early mouse embryo that we described previously. In four recipient females, the microinjected zygotes were allowed to develop to term, the four neonate males of their joint litter were sacrificed, and in three of them human mtDNA was detected in the heart, skeletal muscles, stomach, brain, testes, and bladder. Six females of that joint litter were grown and mated to intact males. In the progeny (F1) of one of the females two mice were carrying human mtDNA in the heart, skeletal muscles, stomach, brain, lungs, uterus, ovaries, and kidneys. The study confirms the possibility to obtain transmitochondrial mice carrying human mtDNA that is transmitted to the animals of the next generation. Our results also indicate that among the organs to which human mtDNA is distributed some are more likely to receive it than others. 相似文献
39.
The inheritance of resistance in the rice cultivars Phalguna, ARC5984, ARC 5158, Veluthacheera, and T1477 to the Asian rice gall midge biotype 2 was studied under both natural and artificial infestation conditions against the susceptible cultivars Jaya and IR20. A single recessive gene in Veluthacheera and two recessive complementary genes in T1477 control resistance. Phalguna and ARC5984 possess a single dominant gene while ARC5158 has a single dominant and a single recessive gene for resistance. Allelism studies showed that genes for resistance in Veluthacheera and T1477 are allelic but non-allelic to the resistance genes in Phalguna and ARC5984, which are allelic to each other. Genes for resistance in ARC5158 are allelic to resistance genes of the other four donors. There was no cytoplasmic inhibition of resistance by the susceptible parents. 相似文献
40.
D. K. Chopade Harish Harde Pallavi Ugale Sandesh Chopade 《Indian journal of human genetics》2014,20(1):85-88
Rearrangements between homologous chromosomes are extremely rare and manifest mainly as monosomic or trisomic offsprings. There are remarkably few reports of balanced homologous chromosomal translocation t (22q; 22q) and only two cases of transmission of this balanced homohologous rearrangement from mother to normal daughter are reported. Robersonian translocation carriers in non-homologous chromosomes have the ability to have an unaffected child. However, it is not possible to have an unaffected child in cases with Robersonian translocations in homologous chromosomes. Carriers of homologous chromosome 22 translocations with maternal uniparental disomy do not have any impact on their phenotype. We are presenting a family with a history of multiple first trimester miscarriages and an unexpected inheritance of balanced homologous translocation of chromosome 22 with paternal uniparental disomy. There are no data available regarding the impact of paternal UPD 22 on the phenotype. We claim this to be the first report explaining that paternal UPD 22 does not impact the phenotype. 相似文献