首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   8篇
  国内免费   2篇
  2023年   1篇
  2022年   2篇
  2020年   3篇
  2018年   1篇
  2017年   6篇
  2016年   2篇
  2015年   3篇
  2014年   14篇
  2013年   5篇
  2012年   4篇
  2011年   13篇
  2010年   10篇
  2009年   13篇
  2008年   12篇
  2007年   22篇
  2006年   9篇
  2005年   3篇
  2004年   12篇
  2003年   6篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1989年   1篇
  1988年   1篇
  1984年   2篇
  1981年   2篇
  1980年   4篇
排序方式: 共有161条查询结果,搜索用时 15 毫秒
11.
12.
During early mouse embryogenesis, multiple patterning and differentiation events require the activity of Nodal, a ligand of the transforming growth factor-beta (TGFβ) family. Although Nodal signaling is known to require activity of EGF-CFC co-receptors in many contexts, it has been unclear whether all Nodal signaling in the early mouse embryo is EGF-CFC dependent. We have investigated the double null mutant phenotypes for the EGF-CFC genes Cripto and Cryptic, which encode co-receptors for Nodal, and have found that they have partially redundant functions in early mouse development. Expression of Cripto and Cryptic is non-overlapping prior to gastrulation, since Cripto is expressed solely in the epiblast whereas Cryptic is expressed in the primitive endoderm of the late blastocyst and the visceral endoderm after implantation. Despite these non-overlapping expression patterns, Cripto; Cryptic double mutants display severe defects in epiblast, extraembryonic ectoderm, and anterior visceral endoderm (AVE), resulting in phenotypes that are highly similar to those of Nodal null mutants. Our results indicate that both Cripto and Cryptic function non-cell-autonomously during normal development, and that most if not all Nodal activity in early mouse embryogenesis is EGF-CFC-dependent.  相似文献   
13.
14.
The left-right (LR) axis is essential for the proper function of internal organs. In mammals and fish, left-sided Nodal expression governs LR patterning. Here, we show that the Polycomb group protein Ezh1, which is highly conserved from fish to human, participates in LR patterning. Knockdown of olezh1, a medaka homologue of Ezh1, led to LR reversal of internal organs. It was shown that OLEZH1 acts in silencing the expression of Spaw (a medaka homolog of Nodal) via a previously unknown pathway. Furthermore, coimmunoprecipitation showed physical interaction of Ezh1 with FoxH1, a Nodal regulator. This represents a novel mechanism for LR patterning and implies that Ezh1 has developmental importance.  相似文献   
15.
After implantation, mouse embryos deficient for the activity of the transforming growth factor-beta member Nodal fail to form both the mesoderm and the definitive endoderm. They also fail to specify the anterior visceral endoderm, a specialized signaling center which has been shown to be required for the establishment of anterior identity in the epiblast. Our study reveals that Nodal-/- epiblast cells nevertheless express prematurely and ectopically molecular markers specific of anterior fate. Our analysis shows that neural specification occurs and regional identities characteristic of the forebrain are established precociously in the Nodal-/- mutant with a sequential progression equivalent to that of wild-type embryo. When explanted and cultured in vitro, Nodal-/- epiblast cells readily differentiate into neurons. Genes normally transcribed in organizer-derived tissues, such as Gsc and Foxa2, are also expressed in Nodal-/- epiblast. The analysis of Nodal-/-;Gsc-/- compound mutant embryos shows that Gsc activity plays no critical role in the acquisition of forebrain characters by Nodal-deficient cells. This study suggests that the initial steps of neural specification and forebrain development may take place well before gastrulation in the mouse and highlights a possible role for Nodal, at pregastrula stages, in the inhibition of anterior and neural fate determination.  相似文献   
16.
Nodal, a member of the TGF-β family of signaling molecules, has been implicated in pluripotency in human embryonic stem cells (hESCs) [Vallier, L., Reynolds, D., Pedersen, R.A., 2004a. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol. 275, 403-421], a finding that seems paradoxical given Nodal's central role in mesoderm/endoderm specification during gastrulation. In this study, we sought to clarify the role of Nodal signaling during hESC differentiation by constitutive overexpression of the endogenous Nodal inhibitors Lefty2 (Lefty) and truncated Cerberus (Cerb-S) and by pharmacological interference using the Nodal receptor antagonist SB431542. Compared to wildtype (WT) controls, embryoid bodies (EBs) derived from either Lefty or Cerb-S overexpressing hESCs showed increased expression of neuroectoderm markers Sox1, Sox3, and Nestin. Conversely, they were negative for a definitive endoderm marker (Sox17) and did not generate beating cardiomyocyte structures in conditions that allowed mesendoderm differentiation from WT hESCs. EBs derived from either Lefty or Cerb-S expressing hESCs also contained a greater abundance of neural rosette structures as compared to controls. Differentiating EBs derived from Lefty expressing hESCs generated a dense network of β-tubulin III positive neurites, and when Lefty expressing hESCs were grown as a monolayer and allowed to differentiate, they generated significantly higher numbers of β-tubulin positive neurons as compared to wildtype hESCs. SB431542 treatments reproduced the neuralising effects of Lefty overexpression in hESCs. These results show that inhibition of Nodal signaling promotes neuronal specification, indicating a role for this pathway in controlling early neural development of pluripotent cells.  相似文献   
17.
Zebrafish with defective Nodal signaling have a phenotype analogous to the fatal human birth defect anencephaly, which is caused by an open anterior neural tube. Previous work in our laboratory found that anterior open neural tube phenotypes in Nodal signaling mutants were caused by lack of mesendodermal/mesodermal tissues. Defects in these mutants are already apparent at neural plate stage, before the neuroepithelium starts to fold into a tube. Consistent with this, we found that the requirement for Nodal signaling maps to mid‐late blastula stages. This timing correlates with the timing of prechordal plate mesendoderm and anterior mesoderm induction, suggesting these tissues act to promote neurulation. To further identify tissues important for neurulation, we took advantage of the variable phenotypes in Nodal signaling‐deficient sqt mutant and Lefty1overexpressing embryos. Statistical analysis indicated a strong, positive correlation between a closed neural tube and presence of several mesendoderm/mesoderm‐derived tissues (hatching glands, cephalic paraxial mesoderm, notochord, and head muscles). However, the neural tube was closed in a subset of embryos that lacked any one of these tissues. This suggests that several types of Nodal‐induced mesendodermal/mesodermal precursors are competent to promote neurulation. genesis 54:3–18, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
18.
A rapid and efficient method for the large-scale propagation of a highly valuable medicinal plant, Andrographis paniculata Nees, through in vitro culture of nodal explants obtained from 15-d-old aseptic seedling has been developed. High frequency direct shoot proliferation was induced in nodal explants cultured on Murashige and Skoog’s medium supplemented with 6-benzylaminopurine (BAP). Amongst the various cytokinins tested (BAP, kinetin, thidiazuron and 2-isopentyl adenine), BAP proved to be the most effective. The shoot forming capacity of the nodal explants was influenced by the BAP concentration (1–12.5 μM), and the optimal response was observed at 10 μM BAP, which induced an average of 34 shoots in 94% of the cultures within 4 wk. Significant differences were recorded in terms of average number of shoots per explant (8.6–34.1) among the different concentrations of BAP investigated. Concentrations of all cytokinins tested reach a level that can be considered above the optimum level, as marked by a reduced frequency of shoot proliferation. The multiple shoots obtained on various concentrations of BAP failed to elongate even after transfer to hormone-free MS medium. Elongation of the induced shoots was achieved on MS basal medium supplemented with 1.0 μM GA3 within 2 wk. A proliferating shoot culture was established by repeatedly subculturing the original nodal explants on shoot multiplication medium after each harvest of the newly formed shoots. The explants retained their morphogenic potential even after three harvests. Therefore, in 90 d, about 60–70 shoots were obtained from a single nodal explant and the nodal explants from primary shoots further regenerated equivalent number of shoots, depicting their high frequency regeneration potential in A. paniculata. Rooting was best induced in 94% of shoots cultured on MS medium supplemented with 2.5 μM indole-3-butyric acid (IBA), within a wk. The plantlets were successfully transferred to soil after hardening with a 92% survival rate. The system is rapid: the initiation of shoot buds to the transplanting of regenerants to soil is completed in 8–9 wk.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号