首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67630篇
  免费   5143篇
  国内免费   2162篇
  2023年   869篇
  2022年   1300篇
  2021年   1782篇
  2020年   2116篇
  2019年   2831篇
  2018年   2602篇
  2017年   1812篇
  2016年   1880篇
  2015年   2172篇
  2014年   4046篇
  2013年   4798篇
  2012年   2917篇
  2011年   3986篇
  2010年   2995篇
  2009年   3302篇
  2008年   3665篇
  2007年   3538篇
  2006年   3110篇
  2005年   2800篇
  2004年   2535篇
  2003年   2132篇
  2002年   1950篇
  2001年   1299篇
  2000年   1071篇
  1999年   1125篇
  1998年   1082篇
  1997年   919篇
  1996年   831篇
  1995年   839篇
  1994年   806篇
  1993年   646篇
  1992年   567篇
  1991年   513篇
  1990年   407篇
  1989年   365篇
  1988年   315篇
  1987年   324篇
  1986年   251篇
  1985年   402篇
  1984年   557篇
  1983年   491篇
  1982年   501篇
  1981年   402篇
  1980年   403篇
  1979年   314篇
  1978年   235篇
  1977年   223篇
  1976年   215篇
  1975年   180篇
  1974年   166篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
111.
A 3-deoxy-2-heptulosaric acid (DHA), very probably with the lyxo-configuration, was identified in the R-core region of lipopolysaccharides from nodulating strains of Rhizobium leguminosarum, Rhizobium meliloti and from all three biovars of the phytopathogenic Agrobacterium tumefaciens. Its structure could be deduced from the fragmentation pattern of the corresponding alditol acetates obtained after reduction of the 2-keto and the 1.7-carboxy groups by sodium borohydride or sodium borodeuteride. DHA in lipopolysaccharide was not destroyed by periodate and is therefore not in a terminal position. Two DHA-containing oligosaccharides, namely glucosyl (1----4)-3-deoxy-2-heptulosaric acid and rhamnosyl-rhamnosyl-(1----5)-3-deoxy-2-heptulosaric acid could be tentatively identified by mass spectrometric methods amongst the products of mild acidic hydrolysis of lipopolysaccharides of Rhizobium leguminosarum strain 24. The two types of non-nodulating mutants of Rhizobium leguminosarum included in this study did not contain 3-deoxy-2-heptulosaric acid.  相似文献   
112.
Three hydroxy-1,8-cineole glucopyranosides, (1R,2R,4S)- and (1S,2S,4R)-trans-2-hydroxy-1,8-cineole β-D-glucopyranosides, and (1R,3S,4S)-trans-3-hydroxy-1,8-cineole β-D-glucopyranoside, which are possible precursors of acetoxy-1,8-cineoles as unique aroma components, were isolated from the rhizomes of greater galangal (Alpinia galanga W.). Their structures were analyzed by FAB-MS and NMR spectrometry, and the absolute configulation of each aglycone was determined by using a GC-MS analysis with a capillary column coated with a chiral stationary phase. The composition of the diastereomers of (1R,2R,4S)- and (1S,2S,4R)- trans-2-hydroxy-1,8-cineole β-D-glucopyranosides in the rhizomes was determined as 3:7 by a GC-MS analysis after preparing the trifluoroacetate derivatives of the glucosides.  相似文献   
113.
114.
115.
3-Phenylpropionitrile was synthesized from Z-3-phenylpropionaldoxime (0.75 M) in a quantitative yield (98 g/l) by the use of cells of Eschrichia coli JM 109/pOxD-9OF, a transformant harboring a gene for a new enzyme, phenylacetaldoxime dehydratase, from Bacillus sp. strain OxB-1. Other arylalkyl- and alkyl-nitriles were also synthesized in high yields from the corresponding aldoximes. Moreover, 3-phenylpropionitrile was successfully synthesized by the recombinant cells in 70 and 100% yields from 0.1 M unpurified E/Z-3-phenylpropionaldoxime, which is spontaneously formed from 3-phenylpropionaldehyde and hydroxylamine in a butyl acetate/water biphasic system and aqueous phase, respectively.  相似文献   
116.
117.
118.
Morphological studies were carried out with peach flower buds collected monthly in 1989 and 1990, from two months before leaf fall (7 March) until two to three weeks before bloom (7/8 August). Chilled (2–4°C for 30 days) and unchilled buds were exposed to 20 to 25°C, 100% RH and continuous light. Gibberellin A3 (3 ng or 30 ng) was applied to some of the non-chilled cuttings at three days intervals. Then, 12, 19, and 26 days after they were planted, the buds were sampled and processed for histological studies. Cultured flower buds (chilled or unchilled) had accelerated anther and gynoecium morphogenesis after 12 days under controlled conditions, compared to buds processed immediately after collection from the field. Chilling treatment augmented the bud culture effect, while Gibberellin A3 applications to the excised buds retarded bud morphogenesis to a stage comparable to that of buds collected directly from the field. This, suggests that the comparatively high levels of Gibberellin A1/3 we previously found in mid winter [15, 18] could be at least one of the factors that controls floral bud dormancy by retarding anther and gynoecium development.  相似文献   
119.
120.
Prion colonization of secondary lymphoid organs (SLOs) is a critical step preceding neuroinvasion in prion pathogenesis. Follicular dendritic cells (FDCs), which depend on both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance, are thought to be the primary sites of prion accumulation in SLOs. However, prion titers in RML-infected TNFR1−/− lymph nodes and rates of neuroinvasion in TNFR1−/− mice remain high despite the absence of mature FDCs. Recently, we discovered that TNFR1-independent prion accumulation in lymph nodes relies on LTβR signaling. Loss of LTβR signaling in TNFR1−/− lymph nodes coincided with the de-differentiation of high endothelial venules (HEVs)—the primary sites of lymphocyte entry into lymph nodes. These findings suggest that HEVs are the sites through which prions initially invade lymph nodes from the bloodstream. Identification of HEVs as entry portals for prions clarifies a number of previous observations concerning peripheral prion pathogenesis. However, a number of questions still remain: What is the mechanism by which prions are taken up by HEVs? Which cells are responsible for delivering prions to lymph nodes? Are HEVs the main entry site for prions into lymph nodes or do alternative routes also exist? These questions and others are considered in this article.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号