首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   4篇
  国内免费   3篇
  377篇
  2021年   1篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   8篇
  2014年   17篇
  2013年   28篇
  2012年   10篇
  2011年   37篇
  2010年   22篇
  2009年   16篇
  2008年   14篇
  2007年   14篇
  2006年   8篇
  2005年   13篇
  2004年   16篇
  2003年   7篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   6篇
  1998年   7篇
  1997年   8篇
  1996年   10篇
  1995年   9篇
  1994年   17篇
  1993年   13篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   7篇
  1983年   8篇
  1982年   11篇
  1981年   12篇
  1980年   5篇
  1979年   7篇
排序方式: 共有377条查询结果,搜索用时 15 毫秒
31.
Proinflammatory M1 activation of hepatic macrophages (HM) is critical in pathogenesis of hepatitis, but its mechanisms are still elusive. Our earlier work demonstrates the role of ferrous iron (Fe(2+)) as a pathogen-associated molecular pattern-independent agonist for activation of IκB kinase (IKK) and NF-κB in HM via activation and interaction of p21(ras), transforming growth factor β-activated kinase-1 (TAK1), and phosphatidylinositol 3-kinase (PI3K) in caveosomes. However, iron-induced signaling upstream of these kinases is not known. Here we show that Fe(2+) induces generation of superoxide anion (O(2)()) in endosomes, reduces protein-tyrosine phosphatase (PTP) activity, and activates Src at 2~10 min of Fe(2+) addition to rat primary HM culture. Superoxide dismutase (SOD) blocks O(2)() generation, PTP inhibition, and Src activation. Fe(2+)-induced p21(ras) activity is abrogated with the Src inhibitor PP2 and SOD. Fe(2+) stimulates Lys(63)-linked polyubiquitination (polyUb) of TRAF6 in caveosomes, and a dominant negative K63R mutant of ubiquitin or SOD prevents iron-induced TRAF6 polyUb and TAK1 activation. These results demonstrate that Fe(2+)-generated O(2)() mediates p21(ras) and TAK1 activation via PTP inhibition and Lys(63)-polyUb of TRAF6 in caveosomes for proinflammatory M1 activation in HM.  相似文献   
32.
Blockers of CFTR with well-characterized kinetics and mechanism of action will be useful as probes of pore structure. We have studied the mechanism of block of CFTR by the arylaminobenzoates NPPB and DPC. Block of macroscopic currents by NPPB and DPC exhibited similar voltage-dependence, suggestive of an overlapping binding region. Kinetic analysis of single-channel currents in the presence of NPPB indicate drug-induced closed time constants averaging 2.2 msec at −100 mV. The affinity for NPPB calculated from single-channel block, K D = 35 μm, exceeds that for other arylaminobenzoates studied thus far. These drugs do not affect the rate of activation of wild-type (WT) channels expressed in oocytes, consistent with a simple mechanism of block by pore occlusion, and appear to have a single binding site in the pore. Block by NPPB and DPC were affected by pore-domain mutations in different ways. In contrast to its effects on block by DPC, mutation T1134F-CFTR decreased the affinity and reduced the voltage-dependence for block by NPPB. We also show that the alteration of macroscopic block by NPPB and DPC upon changes in bath pH is due to both direct effects (i.e., alteration of voltage-dependence) and indirect effects (alteration of cytoplasmic drug loading). These results indicate that both NPPB and DPC block CFTR by entering the pore from the cytoplasmic side and that the structural requirements for binding are not the same, although the binding regions within the pore are similar. The two drugs may be useful as probes for overlapping regions in the pore. Received: 14 October 1999/Revised: 18 January 2000  相似文献   
33.
Divalent cobalt coordination polymers containing both ortho-phenylenediacetate (ophda) and rigid dipyridyl ligands 4,4′-bipyridine (bpy) or 1,2-bis(4-pyridyl)ethylene (dpee) display different topologies depending on carboxylate binding mode, tether length, and inclusion of charged species. [Co(ophda)(H2O)(dpee)]n (1) displays a common (4,4) grid layer motif. Use of the shorter bpy tether afforded {[Co2(ophda)2(bpy)3(H2O)2][Co(bpy)2(H2O)4](NO3)2·2bpy·7H2O}n (2) or [Co(ophda)(bpy)]n (3) depending on cobalt precursor. Compound 2 manifests 5-connected [Co2(ophda)2(bpy)3(H2O)2]n pillared bilayer slabs with rare 4862 SnS topology and entrained [Co(bpy)2(H2O)4]2+ complex cations. The 3-D coordination polymer 3 has an uncommon 4,6-connected binodal (4462)(446108) fsc topology, and shows ferromagnetic coupling (J = +1.5(2) cm−1) along 1-D spiro-fused [Co(OCO)2]n chain submotifs.  相似文献   
34.
Dichoroacetate (DCA) and trichloroacetate (TCA) are by-products formed during chlorination of the drinking water and were found to be hepatotoxic and hepatocarcinogenic in rodents. In this study, the abilities of the compounds to induce oxidative stress and phagocytic activation have been studied in B6C3F1 mice. Groups of mice were administered 300 mg/kg of either DCA or TCA, p.o, and were sacrificed after 6 or 12 h. Peritoneal lavage cells (PLCs) were isolated and assayed for superoxide anion (SA) production, and hepatic tissues were assayed for the production of SA, lipid peroxidation (LP), and DNA-single strand breaks (SSBs). TCA resulted in significant production of SA in the PLCs, and in the production of SA, LP, and DNA-SSBs in the hepatic tissues, 12 h after dosing, as compared with the control. DCA administration, on the other hand, resulted in significant increases in the productions of LP and DNA-SSBs in the hepatic tissues at both time points, and in SA production in PLCs and hepatic tissues, 6 h after dosing. However, DCA-induced increases in SA production in PLC and hepatic tissues declined at the 12-h time point, reaching control level in the hepatic tissues. These results may implicate the contribution of phagocytic activation to the induction of oxidative stress in the hepatic tissues and also the role of SA production in the induction of LP and/or DNA damage in those tissues, in response to the compounds. The results also suggest studying the involvement of these mechanisms in the long-term hepatotoxicity/hepatocarcinogencity of the compounds.  相似文献   
35.
Pendrin is a transmembrane chloride/anion antiporter that is strongly upregulated in the airways in rhinoviral infection, asthma, cystic fibrosis and chronic rhinosinusitis. Based on its role in the regulation of airway surface liquid depth, pendrin inhibitors have potential indications for treatment of inflammatory airways diseases. Here, a completely regioselective route to tetrahydro-pyrazolopyridine pendrin inhibitors based on 1,3-diketone and substituted hydrazine condensation was been developed. Structure-activity relationships at the tetrahydropyridyl nitrogen were investigated using a focused library, establishing the privileged nature of N-phenyl ureas and improving inhibitor potency by greater than 2-fold.  相似文献   
36.
4,4′-Diisothiocyano-1,2-diphenylethane-2,2′-disulfonic acid (H2DIDS) known as an irreversible inhibitor of the anion transport in red blood cells (Cabantchik, Z.I. and Rothstein, A. (1972) J. Membrane Biol. 10, 311–330) blocks also the uptake of bile acids and of some foreign substrates in isolated hepatocytes (Petzinger, E. and Frimmer, M. (1980) Arch. Toxicol. 44, 127–135). [3H]H2DIDS was used for labeling of membrane proteins probably involved in anion transport of rat liver cells. The membrane proteins modified in vitro by [3H]H2DIDS were compared with those labeled by brominated taurodehydrocholic acid. The latter is one of a series of suitable taurocholate derivatives, all able to bind to defined membrane proteins of hepatocytes and also known to block the uptake of bile acids as well as of phallotoxins and of cholecystographic agents (Ziegler, K., Frimmer, M., Möller, W. and Fasold, H. (1982) Naunyn-Schmiedeberg's Arch. Pharmacol. 319, 254–261). The radiolabeled proteins were compared after SDS-electrophoresis with and without reducing agent present, solubilization by detergents, two-dimensional electrophoresis and after separation of integral and peripheral proteins. Our results suggest that the anion transport system of liver cells cannot distinguish between bile acids and the anionic stilbene derivative (DIDS). The labeling pattern for both kinds of affinity labels was very similar. Various combinations of separation techniques gave evidence that the radiolabeled membrane proteins are not subunits of a single native channel protein.  相似文献   
37.
Inactivation of the mainly endosomal 2Cl/H+-exchanger ClC-5 severely impairs endocytosis in renal proximal tubules and underlies the human kidney stone disorder Dent''s disease. In heterologous expression systems, interaction of the E3 ubiquitin ligases WWP2 and Nedd4-2 with a “PY-motif” in the cytoplasmic C terminus of ClC-5 stimulates its internalization from the plasma membrane and may influence receptor-mediated endocytosis. We asked whether this interaction is relevant in vivo and generated mice in which the PY-motif was destroyed by a point mutation. Unlike ClC-5 knock-out mice, these knock-in mice displayed neither low molecular weight proteinuria nor hyperphosphaturia, and both receptor-mediated and fluid-phase endocytosis were normal. The abundances and localizations of the endocytic receptor megalin and of the Na+-coupled phosphate transporter NaPi-2a (Npt2) were not changed, either. To explore whether the discrepancy in results from heterologous expression studies might be due to heteromerization of ClC-5 with ClC-3 or ClC-4 in vivo, we studied knock-in mice additionally deleted for those related transporters. Disruption of neither ClC-3 nor ClC-4 led to proteinuria or impaired proximal tubular endocytosis by itself, nor in combination with the PY-mutant of ClC-5. Endocytosis of cells lacking ClC-5 was not impaired further when ClC-3 or ClC-4 was additionally deleted. We conclude that ClC-5 is unique among CLC proteins in being crucial for proximal tubular endocytosis and that PY-motif-dependent ubiquitylation of ClC-5 is dispensable for this role.  相似文献   
38.
Mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides, and coenzymes across the mitochondrial membrane. The function of only a few of the 35 Saccharomyces cerevisiae mitochondrial carriers still remains to be uncovered. In this study, we have functionally defined and characterized the S. cerevisiae mitochondrial carrier Yhm2p. The YHM2 gene was overexpressed in S. cerevisiae, and its product was purified and reconstituted into liposomes. Its transport properties, kinetic parameters, and targeting to mitochondria show that Yhm2p is a mitochondrial transporter for citrate and oxoglutarate. Reconstituted Yhm2p also transported oxaloacetate, succinate, and fumarate to a lesser extent, but virtually not malate and isocitrate. Yhm2p catalyzed only a counter-exchange transport that was saturable and inhibited by sulfhydryl-blocking reagents but not by 1,2,3-benzenetricarboxylate (a powerful inhibitor of the citrate/malate carrier). The physiological role of Yhm2p is to increase the NADPH reducing power in the cytosol (required for biosynthetic and antioxidant reactions) and probably to act as a key component of the citrate-oxoglutarate NADPH redox shuttle between mitochondria and cytosol. This protein function is based on observations documenting a decrease in the NADPH/NADP+ and GSH/GSSG ratios in the cytosol of ΔYHM2 cells as well as an increase in the NADPH/NADP+ ratio in their mitochondria compared with wild-type cells. Our proposal is also supported by the growth defect displayed by the ΔYHM2 strain and more so by the ΔYHM2ΔZWF1 strain upon H2O2 exposure, implying that Yhm2p has an antioxidant function.  相似文献   
39.
40.
Hetero-oligomerization of neuronal glutamate transporters   总被引:1,自引:0,他引:1  
Excitatory amino acid transporters (EAATs) mediate the uptake of glutamate into neuronal and glial cells of the mammalian central nervous system. Two transporters expressed primarily in glia, EAAT1 and EAAT2, are crucial for glutamate homeostasis in the adult mammalian brain. Three neuronal transporters (EAAT3, EAAT4, and EAAT5) appear to have additional functions in regulating and processing cellular excitability. EAATs are assembled as trimers, and the existence of multiple isoforms raises the question of whether certain isoforms can form hetero-oligomers. Co-expression and pulldown experiments of various glutamate transporters showed that EAAT3 and EAAT4, but neither EAAT1 and EAAT2, nor EAAT2 and EAAT3 are capable of co-assembling into heterotrimers. To study the functional consequences of hetero-oligomerization, we co-expressed EAAT3 and the serine-dependent mutant R501C EAAT4 in HEK293 cells and Xenopus laevis oocytes and studied glutamate/serine transport and anion conduction using electrophysiological methods. Individual subunits transport glutamate independently of each other. Apparent substrate affinities are not affected by hetero-oligomerization. However, polarized localization in Madin-Darby canine kidney cells was different for homo- and hetero-oligomers. EAAT3 inserts exclusively into apical membranes of Madin-Darby canine kidney cells when expressed alone. Co-expression with EAAT4 results in additional appearance of basolateral EAAT3. Our results demonstrate the existence of heterotrimeric glutamate transporters and provide novel information about the physiological impact of EAAT oligomerization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号